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ABSTRACT

Representation and Reconstruction of Linear, Time-Invariant Networks

Nathan Scott Woodbury
Department of Computer Science, BYU

Doctor of Philosophy

Network reconstruction is the process of recovering a unique structured representation 
of some dynamic system using input-output data and some additional knowledge about the 
structure of the system. Many network reconstruction algorithms have been proposed in 
recent years, most dealing with the reconstruction of strictly proper networks (i.e., networks 
that require delays in all dynamics between measured variables). However, no reconstruction 
technique presently exists capable of recovering both the structure and dynamics of networks 
where links are proper (delays in dynamics are not required) and not necessarily strictly 
proper.

The ultimate objective of this dissertation is to develop algorithms capable of recon-
structing proper networks, and this objective will be addressed in three parts. The first 
part lays the foundation for the theory of mathematical representations of proper networks, 
including an exposition on when such networks are well-posed (i.e., physically realizable). The 
second part studies the notions of abstractions of a network, which are other networks that 
preserve certain properties of the original network but contain less structural information. As 
such, abstractions require less a priori information to reconstruct from data than the original 
network, which allows previously-unsolvable problems to become solvable. The third part 
addresses our original objective and presents reconstruction algorithms to recover proper 
networks in both the time domain and in the frequency domain.

Keywords: dynamic systems, networks, network reconstruction, target specificity, system 
identification, learning, linear systems, system representations, state space models, generalized 
state space models, dynamical structure functions, dynamical network functions, DSF, DNF, 
multi-DSF, feedback, well-posedness, algebraic loops, representability, abstraction, immersion, 
identifiability, informativity, data, proper systems, strictly proper systems, causality, strict 
causality, frequency domain, time domain
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Chapter 1

Introduction and Motivation

This work is concerned with structured (or network) representations of dynamic

systems, and, in particular, network representations of linear and time-invariant (LTI)

systems. Our model of choice to represent dynamic LTI networks is the dynamical structure

function (DSF) and its generalization called the dynamical network function (DNF).

1.1 Notions of Structure and a Spectrum of Models

LTI systems can be represented by many models, each containing different levels of structural

information, where we define structure as the causal dependencies and independencies between

manifest and latent variables. Two such models, the state space model and the transfer

function, are well-known and have been studied for decades in various engineering disciplines.

The transfer function is a matrix of operators that map a set of input signals to a set

of output signals. In other words, it is a black-box model that defines the causal relationship

from each input into the LTI system and the resulting outputs.

The state space model is a differential-algebraic system of equations containing the

mapping of the inputs into latent (unmeasured) internal states, the mapping of the internal

states to themselves, and the mapping from the inputs and the internal states to the outputs.

As such, there are more causal relationships modeled in the state space model than the

transfer function, and we say that the state space model contains more structural information

than the transfer function.

2
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Figure 1.1 The transformations from a more-structured model to a less-structured model
are unique where the transformations from a less-structured model to a more-structured
model are not.

The DSF and the DNF are each a factorization of the transfer function. Each edge in

these networks shows the mapping of input to output which is independent of all other inputs

and outputs in the network [1, 2]. In [3], it is shown that there are DSF representations of

LTI networks that contain as much structural information as the state space model, other

networks that contain as little information as the transfer function, and still other networks

that contain many intermediate levels of information. Due to this flexibility in structural

representation, the DSF has become the representation of choice in many applications, such

as finance, biochemistry, and the security of cyber-physical systems [4–8].

It is known (see, for instance [1, 3] and Chapters 2 and 4) that the transformation

from a more structured model to a less structured model is unique. However, for any given

model that is less structured, there exist many (typically infinitely many) more structured

models that we can transform into that less structured model. See Figure 1.1.

The problem of discovering any more-structured model from a less-structured model

such that the complexity of the more-structured model is minimized across the set of all

possible such models is known as the minimal realization problem. The problem of recovering

a specific and more-structured model given a less-structured model and additional a priori

knowledge or assumptions about the network is known as network reconstruction.

More specifically, suppose we are given the following:

3
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• Data

• A model class, where a set of parameters distinguishes model instances

• A metric comparing predicted model outputs to data

A learning problem is the problem of selecting the unique model in the given model class

(i.e., some set of parameters) that best fits the data according to the metric. This problem

is widely studied in many fields (e.g., machine learning in computer science, econometrics

in economics, regression in mathematics) and can be considered one of the most important

problems in science.

System identification is a broad subclass of learning problems where the model class is

a set of dynamic models, and the data is the set of manifest variables in the dynamic system

of interested measured over some time horizon. Much of the theory in system identification

revolves around finding black-box or input-output models such as the transfer function. The

network reconstruction problem is a subclass of system identification problems where the

model class is a structured model, such as the DSF or a state space model.

The reason that most of the system identification theory focuses on input-output

models is that input-output data is only sufficient to recover an input-output model. No

matter how long we watch the data or how rich the data we receive is, we will never be able

to recover anything more than an input-output model. Moreover, as discussed previously,

there are many (almost always infinitely-many) structured models corresponding to any

single input-output model. Thus additional information–specifically information about the

structure of the network–is required to choose a unique structured model. This additional

a priori information is known as the identifiability conditions (or informativity conditions

in some works) required for reconstruction. The identifiability conditions take the form of

knowing that specific edges in the network are either zero or linear combinations of other

edges.

Furthermore, as the amount of structural information contained within a model

increases, the amount of a priori information required by the identifiability conditions likewise

4
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increases. Hence the power and utility of using the DSF as a model of an LTI system, we

can tune the amount of structural information contained within the model according to the

amount of a priori information we have merely by measuring more or less of the system.

Thus we can choose a level of abstraction (see Chapter 3) that is cheaper to learn than a

state space model and yet contains more structural information than a black box (transfer

function) model.

Note that, in many scenarios, knowing an unstructured model, such as the transfer

function, is sufficient for the desired problem (e.g., a predictive modeling or a control problem).

However, having a structured model does provide the following benefits that are unavailable

for black-box models (and these benefits provide the key motivation for this work):

• Mechanistic Insight: A significant part of science revolves around the construction of

mechanistic models that improve our understanding of the world around us. Mechanistic

models are inherently structured, and give us insight into the fundamental principles that

drive the behaviors that we observe. Network Reconstruction is capable of providing

mechanistic insight that is unavailable in black box models.

• Local Sensitivity Analysis: A structured model allows us to analyze how local

perturbations in the network can affect local and global behavior. For instance, in

[6, 9–12], it is shown that a small perturbation to local edges within a DSF can cause

cascading failures across the entire network, causing it to go unstable. These papers

demonstrate how to find which edges are vulnerable to such an attack and how much

energy is required on each edge to cause the network to fail. These papers also provide

information on how to design such networks so that they are secure to such attacks.

• Local Control: Suppose that we only have access to a piece of a network, and wish to

control one manifest variable without our attack being detected by another (sometimes

called a stealthy attack). Then a structured representation of the system can tell us

if this is possible, and if so, how to do it. It can also tell us how to prevent such an

attack. See [13] for more information.

5
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• Robust Control: The robust control problem, often performed on a black-box model,

assumes that our model of a given system is imperfect. It then seeks to control the

system by controlling not only the given model but all other models within some

distance specified by our uncertainty about the model. Unfortunately, sometimes this

distance is too big making the control problem impossible. Moreover, sometimes, even

if control is possible, it is too conservative, leading to inefficiencies in operation.

However, if we had a structured model instead of a black-box model, we could potentially

fine-tune the ball of uncertainty around model by reducing the distance in specific

dimensions that are certain. Thus, a structured model would allow us to build less-

conservative robust controllers. This concept is related to the vulnerability analysis

described previously; however, to the author’s knowledge, it has never been formally

explored.

A study of the network reconstruction problem is the main topic of Chapter 4 in this work.

Example 1.1.1: A Graphical View of Structure

Suppose that we are seeking to model an LTI system containing three inputs u =

[u1, u2, u3]′ and three outputs y = [y1, y2, y3]′. Suppose that this LTI system is modeled

with the following state space model containing six states x = [x1, . . . , x6]′:

x(t+ 1) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(1.1)

6
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where

A =



3
4

0 0 0 0 6
5

− 1
10
− 7

20
0 0 0 0

0 0 17
20
−1 0 0

0 − 73
100

0 19
20

0 0

0 0 43
100

0 −3
5

0

0 0 0 0 1
5

11
20


, B =



7
5

0 0

0 −1
4

0

0 0 3
4

0 0 0

0 0 0

0 0 0


,

C =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 D =


0 0 0

0 0 0

0 0 0

 .

(1.2)

Note that matrix A defines the computational (or causal) mappings from the current state

x(t) to the next state x(t+ 1). The matrix B defines the computational mappings from

the current input u(t) to the next state x(t+ 1). The matrix C defines the computational

mappings from the current state x(t) to the current output y(t). And the matrix D

defines the computational mappings from the current input u(t) to the current outputs

y(t).

As such, we can draw a graph defining the computational (causal) dependencies

within this network. In this graph, there are 12 nodes, one for each input, output, and

state. An edge between some state node xi and some state node xj exists if and only if

Aji 6= 0. An edge between some input node ui and some state node xj exists if and only

if Bji 6= 0. An edge between some state node xi and some output node yj exists if and

only if Cji 6= 0. And an edge between some input ui and some output yj exists if and

only if Dji 6= 0 (and since D = 0 for this example, no such edges will exist). Hence, we

draw the graph shown in Figure 1.2.

7
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Figure 1.2 A graph of the state space model defined by (1.1) and (1.2. Green nodes are
the states x, orange nodes are the inputs u, and blue nodes are the outputs y. Green edges
show the computational (causal) dependencies within states as defined by A. Orange
edges show the computational dependencies from inputs to states defined by B. Blue
edges show the computational dependencies from states to outputs defined by C.

Notice from the definition of C that y1 = x1, y2 = x2, and y3 = x3. Thus we can

discuss the direct computational dependencies from yi = xi to yj = xj. From Figure

1.2 that there exists a dependency from y3 = x3 to y1 = x1 that does not pass through

y2 = x2 or any ui (though it does pass through x5 and x6. Likewise, there exists a

dependency from u1 to y1 that does not pass through y2 = x2, y3 = x3, or any other uj.

However, there does not exist a dependency from y1 = x1 to y3 = x3 that does not first

pass through y2 = x2.

Another graph that we can draw shows an edge from ui to uj if and only if there

is some path from ui to yj in Figure 1.2. Notice that there exists some path from every

input to every output, and so this graph (Figure 1.3) is full.

8
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Figure 1.3 A graph of all of the dependencies from the inputs U to outputs Y shown
in Figure 1.2. This is also the graphical representation of the transfer function G (1.5)
representation of this example system, where an edge from input Ui to output Yj exists
if and only if Gji(z) 6= 0.

The transformation from the discrete-time state space model to the transfer

function is well-known and accomplished by taking the Z-transform of (1.1). The transfer

function defines the relationship between U and Y (the Laplace transform of u and y

respectively) as

Y = G(z)U, (1.3)

where G(z) is a matrix of proper rational functions (i.e., a polynomial divided by another

polynomial where the degree of the polynomial in the numerator is no greater than the

degree of the polynomial in the denominator). We have that the transfer function of this

example is

G(z) = C(zI − A)−1B +D (1.4)

9
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=


n11

d
n12

d
n13

d

n21

d
n22

d
n23

d

n31

d
n32

d
n33

d

 , where (1.5)

d = z6 − 2.150z5 + 0.825z4 + 0.939z3 − 0.622z2 − 0.06z + 0.07,

n11 = 1.4z5 − 1.96z4 − 0.315z3 + 1.078z2 − 0.622z − 0.131,

n12 = −0.014z4 + 0.025z3 − 0.005z2 − 0.009z + 0.004,

n13 = −0.1z2 − 0.001z + 0.003,

n21 = −0.019,

n22 = −0.25z5 + 0.625z4 − 0.425z3 − 0.086z2 + 0.186z − 0.050,

n23 = −0.183z3 + 0.128z2 + 0.067z − 0.045,

n31 = 0.077z2 − 0.046z − 0.026,

n32 = −0.001z + 0.001,

n33 = 0.75z5 − 0.975z4 − 0.210z3 + 0.526z2 − 0.020z − 0.062.

The graph of the transfer function, which plots an edge from Ui to Yj if and only if

Gji(z) 6= 0 is precisely the graph in Figure 1.3 described previously.

We can also collect all of the dependencies in Figure 1.4 and draw an alternate

graph where an edge between Ui and Yj or between Yi and Yj if and only if there exists a

dependency from i to j independent of all other inputs U or outputs Y . It is up to the

designer to include the self-loops in this graph, and we choose not to in this example.

This graph is known as the signal structure of this dynamic network (see Figure 1.4).

Note that, often, the signal structure also contains weights on the edges of the graph

which are equal to the operators in the DSF.

10
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Figure 1.4 A graph of all of the direct dependencies (in contrast to all dependencies as
shown in Figure 1.3 from the inputs U to outputs Y shown in Figure 1.2. This is also
the graphical representation of the DSF (Q(z), P (z)) (1.7) representation of this example
system, where an edge from input Ui to output Yj exists if and only if Pji(z) 6= 0 and an
edge from output Yi to output Yj exists if and only if Qji(z) 6= 0.

If we follow the procedure contained in [1] and Chapter 2 of this work to convert

the state space model in (1.1) to a DSF, we get the relationship

Y = Q(z)Y + P (z)U, (1.6)

where U and Y are again the Z-transform of the inputs U and the outputs Y respectively

and where Q(z) and P (z) are both matrices of rational functions (as was the transfer

11
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function) given by

Q(z) =


0 0 1032

25(4z−3)(5z+3)(20z−11)

− 2
20z+7

0 0

0 292
(20z−19)(20z−17)

0

 , and

P (z) =


28

5(4z−3)
0 0

0 − 5
20z+7

0

0 0 15
20z−17

 .
(1.7)

We can draw a graph of this DSF where an edge from Ui to Yj exists if and only if

Pji(z) 6= 0 and an edge from Yi to Yj exists if and only if Qji(z) 6= 0. Notice that

this graph is precisely the signal structure given in Figure 1.4. Thus, the graphical

representation of a DSF is a signal structure and the DSF represents the direct causal

dependencies between and within inputs and outputs. If we had chosen to find a DNF

instead of a DSF, the graph would have been the same as this signal structure, but where

we chose to include the self-loops as well. This highlights the difference between the DNF

and the DSF: the DNF includes self-loops where the DSF does not. See Section 3.4 for

more details.

Also notice that there is a clear ring structure between Y1, Y2, and Y3 in the signal

structure. This ring is also apparent in the graph of the state space model, though there

are many additional details graphed as well; as such, the state space model contains

more structural information than this DSF. In contrast, no cycles between outputs can

ever be seen in the transfer function. In this example, it can only show that every

output is eventually dependent on every input; as such, the transfer function contains

less structural information than this DSF.
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1.2 Proper and Strictly Proper Networks

As shown in Example 1.1.1, the DSF is parameterized by the pair (Q(z), P (z)) which defines

the relationship between inputs U and outputs Y as

Y = Q(z)Y + P (z)U. (1.8)

In the frequency domain, both Q(z) and P (z) are matrices of proper rational functions.

Matrix Q(z) defines the causal dependencies of Y ’s on other Y ’s and matrix P (z) defines the

causal dependencies of Y ’s on U ’s.

Suppose that we are dealing with a discrete-time system, and suppose that each Qji(z)

is strictly proper (and similarly for entries in P (z)). Then the computation of Yj is dependent

on the past of Yi but is independent on the present or the future of Yi. For instance, suppose

that yj(t) and yi(t) are computed at the discrete times t = 0, 1, . . . ,∞. If we interpret our

network probabilistically, then this means that

P
(
yj(t)

∣∣∣ yi(0), yi(1), . . . , yi(∞)
)

=

 P
(
yj(t)

∣∣∣ yi(0), yi(1), . . . , yi(t− 1)
)

if Qji(z) 6= 0

P (yj(t)) if Qji(z) = 0

(1.9)

If every entry in Q(z) and P (z) are strictly proper, then we say that the DSF (Q(z), P (z)) is

strictly proper.

On the other hand, if Qij(z) is proper (and similarly for entries in P (z)), then the

computation of Yj is dependent on the past and the present of Yi, but is independent of the

future of Yi. For instance, suppose that yj(t) and yi(t) are computed at the discrete times

t = 0, 1, . . . ,∞. The probabilistic interpretation of this gives

P
(
yj(t)

∣∣∣ yi(0), yi(1), . . . , yi(∞)
)

=

 P
(
yj(t)

∣∣∣ yi(0), yi(1), . . . , yi(t)
)

if Qji(z) 6= 0

P (yj(t)) if Qji(z) = 0

(1.10)
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If every entry in Q(z) and P (z) are proper, then we say that the DSF (Q(z), P (z)) is proper.

Note that the set of strictly proper DSFs is a strict subset of the set of proper DSFs.

In particular, if Q(z) is proper, then it is equal to the sum of a strictly proper matrix and a

static matrix (i.e., a matrix consisting only of real-valued entries instead of rational functions).

In this dissertation, we are concerned primarily with the set of networks that are proper, but

not strictly proper. We are especially concerned with those DSFs that have at least one entry

in Q(z) that is proper but not strictly proper.

Example 1.2.1: Proper and Strictly Proper Networks

Suppose that our network is given by

Y1

Y2

 =

 0 Q21(z)

Q12(z) 0


Y1

Y2

+

P11(z) 0

0 P22(z)

 . (1.11)

Suppose also, for simplicity in plotting, that each Yi is dependent on values of Yj, Ui,

and Uj at no more than one time-step in the past (such a situation arises if the DSF

is a full-state DSF as defined in Definition 3.6.2; see Remark 4.2.1). The graph of this

network is given on the left of Figures 1.5-1.7.

Suppose that we “unwrap” the network to show the dependency of the computation

of each yi(t) on current and previous values of yj(t) and ui(t). Note that if we were

to draw the more general case where each Qij(z) and Pij(z) were strictly proper and

dependent on all past values (for instance, if we weren’t dealing with a full-state DSF),

then there would be many more edges in this graph connecting each yi(t) to all previous

values of yj(t) and ui(t). This complexity highlights one reason why we choose to use the

DSF in this work–the DSF leverages operator theory to write down a more abbreviated

version of the network and to make the analysis of the network much more simple). The

graph showing these computational dependencies is given in Figure 1.5. Note also that

the graph in Figure 1.5 is a directed and acyclic polytree.
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Figure 1.5 A graph of the structural and temporal dependencies of (1.11) where every
entry in Q(z) and P (z) are strictly proper. On the left, we have a graph of Q(z) and
P (z), and on the right, we have “unwrapped” Q(z) and P (z) to show the temporal
dependence of each U and Y on previous values of U and Y . Since Q(z) and P (z) are
strictly proper, each node at time t is dependent only on nodes strictly in the past of t.
Blue edges are the strictly proper components of Q(z) and orange edges are the strictly
proper components of P (z).

If P (z) were instead proper and not necessarily strictly proper, then we must

add additional edges from each ui(t) to yi(t) (Figure 1.6). Notice, however, that such a

network is still a directed and acyclic polytree.

Figure 1.6 A graph of the structural and temporal dependencies of (1.11) where every
entry in Q(z) is strictly proper, and every entry of P (z) is proper but not strictly proper.
On the left, we have a graph of Q(z) and P (z), and on the right, we have “unwrapped”
Q(z) and P (z) to show the temporal dependence of each U and Y on previous and present
values of U and Y . Since Q(z) is strictly proper but and P (z) is proper, each node yj(t)
is dependent on yi(t) (i 6= j) strictly in the past of t, but dependent on u1(t) and u2(t)
in both the past and the present of t. Blue edges are the strictly proper components of
Q(z), orange edges are the strictly proper components of P (z), and red edges are the
static components of P (z).
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A more interesting case occurs when both Q12(z) and Q21(z) are proper but not

strictly proper. In this case, we add a cycle between each y1(t) and y2(t) (Figure 1.7).

Such a cycle is sometimes called an algebraic loop and can lead to inconsistencies in the

computation of the system (an issue known as ill-posedness, see Chapter 2). One of the

main objectives of this work (Chapter 4) is to provide algorithms capable of identifying

such networks using input-output data.

Figure 1.7 A graph of the structural and temporal dependencies of (1.11) where every
entry in Q(z) and P (z) are proper and not strictly proper. On the left, we have a graph
of Q(z) and P (z), and on the right, we have “unwrapped” Q(z) and P (z) to show the
temporal dependence of each U and Y on previous and present values of U and Y . Since
Q(z) and P (z) are proper but not strictly proper, each node at time t is dependent on
nodes in the past and the present of t. Blue edges are the strictly proper components
of Q(z), purple edges are the static components of Q(z), orange edges are the strictly
proper components of P (z), and red edges are the static components of P (z).

Due to physical limitations (e.g., the speed of light), it can be argued that proper

networks do not exist in nature, but are merely mathematical constructs. These networks,

however, often arise when we attempt to model systems using discrete-time models. If the

system contains significant dynamics that move more quickly than the sampling time, then

those dynamics will be approximated using a static edge.

For instance, consider a network model of a stock market where each signal yi(t) is

a measure of the stock price of security i (e.g., MSFT , GOOG, AAPL, etc.) at time t.

Suppose that we only measure stock prices at the end of each day. Then QMSFT,GOOG(z)

represents the causal dependency of the price of MSFT on day t on the prices of GOOG from

the beginning of time until day t. Since the prices of both securities change throughout the
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day, and since such intra-day changes in GOOG likely cause an intra-day change in MSFT ,

some dynamics are moving more quickly than our daily price measurement. The static term

will approximate these dynamics from GOOG to MSFT . Higher-frequency sampling will

reduce the significance of this static dependence to the limit of infinity (or at least the clock

speed of the market mechanism computing prices) where this static dependency is zero.

1.3 Overview

The central theme behind this work is a study of networks that are proper and not necessarily

strictly proper, as motivated by the previous section.

Chapter 2 is based off of the published works [14, 15]; however, it also contains

additional novel research above and beyond those works (see Section 2.1.1 for more details).

An abbreviated version of the chapter, at the time of the dissertation defense, was submitted

as the stand-alone paper [16].

Chapter 2 begins by introducing (for the first time in literature) the DNF as a

generalization of the DSF since analysis is easier over the DNF, and the results quickly

translate to the DSF as well. It demonstrates how to transform a state space model into

a DNF and then shows that no state space model can generate a Q(z) that is proper but

not strictly proper. However, it also shows that an interconnection of state space models

can lead to a proper Q(z). Thus, it uses the generalized state space model to represent an

interconnection of state space models and shows how to transform this model into a DNF. It

also shows that all proper DSFs have a generalized state space model representation.

Chapter 2 then continues by showing that the algebraic loops allowed by proper a

Q(z) can lead to a network that is ill-posed, meaning that the signals y either do not exist,

are not unique, or are not causally dependent on the other signals in y or u. The primary

contribution of this chapter is to provide conditions over Q(z) ensuring that it is well-posed

(y exists, is unique, and is proper).
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Chapter 3 is based off the published works [3, 15, 17]; however, this chapter also

contains additional novel research above and beyond those works (see Section 3.1.3). An

abbreviated version of that chapter will be submitted as a stand-alone paper to the IEEE

Transactions on Automatic Control.

In Chapter 3, we study abstractions of DNFs, which are other DNFs that share the

same input-output behavior and other properties from the original but contain less structural

information than the original network. One abstraction, in particular, is known as the

immersion, which is an abstraction of a DSF which results in another DSF.

Chapter 3 introduces representability of abstractions, which is related to well-posedness.

It shows that–where well-posedness is the study of the generic existence, uniqueness, and

properness of the transfer function found from some network–representability is the study

of the generic existence, uniqueness, and properness of the abstraction itself. For each

abstraction, it presents conditions of representability and shows that if an abstraction is

representable, then it is well-posed if and only if the base network is well-posed.

Finally, Chapter 3 concludes by using the immersion to define a spectrum of models.

To do so, it introduces a more general DNF known as the multi-DNF and a more general

immersion over the DNF known as the stacked immersion. It shows that there exists a multi-

DNF that contains as much structural information as the state space model. It shows that

there also exists a stacked immersion of this multi-DNF with as little structural information

as the transfer function. It also shows that all other stacked immersions of this multi-DNF

form a partial ordering of structural information ranging from the state space model to the

transfer function.

Chapter 4 is based off the works [12, 18]; however, it contains novel results above

and beyond those works (which we discuss below). An abbreviated version of this chapter

will be submitted as a stand-alone paper to the IEEE Transactions on Automatic Control.

Chapter 4 utilizes the theory built in the previous two chapters to study the network

reconstruction problem. It presents two algorithms for solving the network reconstruction
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problem, the first in the frequency domain and the second in the time domain, outlining the

advantages and disadvantages of each.

The frequency-domain algorithm to reconstruct DSFs existed long before this work

(see [19]), and though it is capable of reconstructing proper (and not necessarily strictly

proper) networks, all previous work assume that the networks are strictly proper. Here, we

demonstrate that the algorithm reconstructs not only proper networks but also networks

where entries in Q(z) and P (z) are taken from general fields. We also extend the frequency-

domain algorithm to reconstruct DNFs and provide the necessary and sufficient identifiability

conditions to solve this problem.

The time-domain algorithm was first presented in [20] and extended in [12, 18], but

those works required that the network be a strictly proper DSF. In this chapter, we generalize

the algorithm so that it is capable of reconstructing proper DNFs and provide the necessary

and sufficient identifiability conditions for this algorithm as well. We also provide, for the

first time, necessary conditions under which the input-output data is informative enough to

reconstruct the network.

Remark 1.3.1: To clarify notation, Chapters 2 and 3 build their theory around continuous-

time systems. Thus, all rational functions in those chapters (including those in the DSF

matrices) are written in terms of the Laplace variable s ∈ C. In this introduction and

in Chapter 4, the discussion centers around discrete-time systems. Thus, all rational

functions in these chapters are written in terms of z ∈ C. While there are semantic differ-

ences between s and z dealing with the differences between continuous- and discrete-time

systems, most of the analysis in this work applies naturally to both situations, with the

time-domain network reconstruction algorithm and the examples above being the only

notable exceptions.

As such, to demonstrate that we are agnostic between the frequency and the time

domain (and for notational brevity), we often drop the dependency of G,Q, P,W, V (and

other matrices of rational functions) on s or z.
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Chapter 2

On the Well-Posedness of LTI Dynamic Networks1

This chapter is concerned with dynamic networks of linear, time-invariant systems

defined over matrices of rational functions in a complex variable. We show that state space

models are not sufficient to characterize the full space of interest of these networks; thus

we must utilize a more generalized state space model which contains information about the

feedback interconnection of multiple state space models. We then define the notion of well-

posedness over these networks as a regularity condition over feasible mathematical models for

physical systems. With this definition, we characterize conditions over the dynamic networks

and their corresponding generalized state space models under which they are well-posed.

2.1 Introduction

We can model the dynamics of linear, time-invariant (LTI) systems in many ways. For

instance, we can use state space model to capture both the input-output behavior of the

system as well as the internal structure, where internal structure defined as the computational

dependencies among the latent and the manifest variables within the network. We can also

use the transfer function to capture the input-output behavior only while abstracting away

the information about the internal structure of the system.

The dynamical structure function (DSF) is a type a dynamic network, another model of

dynamic systems. The work [3] shows that these dynamic networks are capable of representing

as much structural information as a state space model, as little as a transfer function, or with

1A variation of this chapter was submitted to the Transactions on Automatic Control [16].
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many intermediate levels of structural information. Because of this flexibility in representation,

dynamic networks have increasingly become the representation of choice in applications where

knowledge of both the dynamic behavior and the computational structure of the system are

required [4–8]. This work is focused on general dynamic networks, which we represent with a

generalization of the DSF called the dynamical network function (DNF).

When defining a mathematical model to represent a physical dynamic system, it is

possible that the model does not make physical sense. For instance, if the inputs do not

uniquely determine the outputs of the of the model into that model, it would be sensible

not to consider this a reasonable model since this phenomenon cannot occur in the physical

system we are modeling [21–25]. We use the notion of well-posedness to restrict a set of

models to a subset that makes physical sense. As Jan Willems states [21]:

Well-posedness is essentially a modeling problem. It expresses that a mathematical

model is, at least in principle, adequate as a description of a physical system

. . . Well-posedness thus imposes a regularity condition on feasible mathematical

models for physical systems . . . In other words, since exact mathematical models

would always be well posed, one thus requires this property to be preserved in

the modeling.

The purpose of this work is to provide the necessary and sufficient conditions under

which a DNF is well-posed.

2.1.1 Related Work and Contributions

This chapter is concerned with the study of well-posedness of DNFs in particular and is a

direct extension of [14, 15]. In addition to the material contained in those previous works,

this chapter includes the following novel contributions:

(i) The extension of [14, 15] and other works from DSFs into the realm of DNFs (See

Remark 2.3.1).
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(ii) A proof that state space model can only be converted into a DNF with strictly proper

entries in matrix Q (Theorem 2.4.3), which is important since all such models are always

well-posed (Corollary 2.5.9).

(iii) The process of converting a generalized state space model to a DNF (Section 2.4.2),

with a proof that for any proper (and not necessarily strictly proper) DNF, there

exists a generalized state space model that can we can transform into that DNF

(Theorem 2.4.10).

(iv) A demonstration that the DNF found from converting a generalized state space model

(representing an interconnection of state space models) into a DNF results in the same

model that we would find if we converted each sub-model into a DNF first and then

interconnected the resultant DNFs (Example 2.4.11).

(v) The connection of well-posedness of DNFs to the well-posedness of generalized state

space models (Section 2.5.3 and Theorem 2.5.8).

We acknowledge that the conditions for well-posedness of DSFs (sometimes called linear

dynamical networks) contained in Proposition 2.5.5 have been stated prior to [14, 15] and

this work (see, for instance, [8, 26]); however, the key novelty of this work is the proof that

this condition is a necessary and sufficient implication of Jan Willem’s original definition for

the well-posedness of networked dynamical systems [21] (see Section 2.5.2) as well as the

connection of this condition to the well-posedness of interconnected state space models (see

Section 2.5.3).

2.2 Preliminaries

This work is largely concerned with functions of the form g(s) = n(s)
d(s)

, where n(s) and d(s)

are functions in s ∈ C. If the degree of n(s) is no greater than the degree of d(s), we say
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that q(s) is proper. If the degree of n(s) is strictly less than the degree of d(s), then we say

that g(s) is strictly proper.

We are also concerned with matrices consisting of these rational functions. We say that

the matrix G(s) = [gij(s)] is proper if every rational function gij(s) is proper, and likewise

G(s) is strictly proper if every gij(s) is strictly proper. In the vein of [27], we define RPm×n as

the set of all m×n matrices of proper (and not necessarily strictly proper) rational functions.

Also, for notational simplicity, we will often drop the dependency of these matrices on s; i.e.,

we write G(s) simply as G.

We say that G ∈ RP p×p is invertible almost everywhere if it is singular only for a

finite choice of values s ∈ C. For brevity, from this point forward, when we say that G is

invertible, we mean that it is invertible almost everywhere. See the appendix for additional

results on functions and matrices of rational functions that will be utilized later in this work.

2.3 Background: Dynamic Networks

Consider N manifest (or visible, or measured) real-valued signals w(t) = [w1(t), . . . , wN(t)]′,

where t ∈ R or t ∈ Z (in this work we will focus on t ∈ R, although all the results hold for

t ∈ Z as well). The behavior of any such system can be defined by a constraint f(w) = 0

for some operator, f , distinguishing allowed values of the manifest variables from disallowed

values. In general, there may be many such representations with the same solution set, or

behavior. If f is bijective, then we can say that the system is autonomous. However, if f

is not injective, then the manifest signals can be partitioned (possibly non-uniquely) into

inputs and outputs, where the outputs are uniquely specified for any choice of input signal.

This work considers linear finite-dimensional systems, where a partition can always be found

(possibly non-uniquely) for which the outputs are not only uniquely specified given arbitrary

inputs, but they are also causally determined from these inputs. Note that a specification of

which signals are inputs and which are outputs must be given as additional information–it
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can not be derived in general from f–and this partition introduces a notion of causality on

the system.

In this work, we are concerned primarily with LTI systems. Thus, we can write the

behavior as f(w) = W̄w = 0, where W̄ is an N ×N matrix of SISO causal operators2. Let

p = rank W̄ and m = N − p. By partitioning w into m inputs3 u and p outputs y, we can

again rewrite this behavior, without loss of generality, as

(I −W ) −V

0 0


y
u

 =

0

0

 =⇒ y = Wy + V u. (2.1)

where W is a p× p matrix and V is a p×m matrix. We call the tuple (W,V ) the dynamical

network function (DNF) of this system. Matrix V defines the causal dependencies of each

output y on each input u, independent of all other manifest variables in the network. Matrix W

defines the causal dependencies of each output y on every other output y, again independent of

all manifest variables in the network. Thus, the DNF defines a network of causal dependencies

among manifest signals. This network can be rigorously characterized by a graph called the

signal structure, with nodes representing each manifest signal and directed edges labeled with

(possibly) dynamic operators characterizing the causal dependency of one signal on another.

See Figure 2.1 for examples of signal structures.

Remark 2.3.1: Previous works (e.g., [1, 14, 15]) contain treatments of the dynamical

structure function (DSF), which are very similar to the DNF but with one subtle

distinction. A DSF (Q,P ) defining the relationship y = Qy+Pu is derived from a signal

structure where W̄ is required to be hollow (meaning [W̄ ]ii = 0 for all i), which implies

2For simplicity, we will assume that these operators are continuous-time systems in the frequency domain,
meaning that each operator is a rational function in the Laplace variable s ∈ C. Causality implies that
these rational functions are proper. The results in this work also generalize naturally to discrete-time and
time-domain operators as well.

3Some works (e.g., [1, 28]) further partition inputs based on whether they are controlled, uncontrolled,
deterministic, stochastic, etc. We make no such distinction in this work, although we do remind the reader
that these signals are all manifest, not fictitious (e.g., white noise) as part of a particular modeling framework.
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that Q is also hollow. Hollowness implies that there are no self-loops from signals wi to

themselves, or, equivalently outputs yi to themselves. In this work, we introduce the DNF

as a generalization of the DSF by not requiring either W̄ or W to be hollow, meaning

that self-loops are allowed but not required. In consequence, this set of results apply to

all linear dynamical networks, including DNFs and DSFs.

By assuming that (I −W ) is invertible and solving for y, we can re-arrange the DNF

such that

y =
[
(I −W )−1V

]
u , Gclu, (2.2)

where Gcl is the closed-loop transfer function characterizing the input-output behavior of this

system. Thus we see that the invertibility of (I −W ) is important to the characterization of

this DNF and its behavior, and, as we will show in this work, the invertibility of (I −W ) is

also intimately tied to the well-posedness of the DNF.

Remark 2.3.2: Note that we can find an equivalent behavior by considering the con-

straint MW̄ = 0, where M has a proper inverse. It can be shown that all equivalent

behaviors result in the same closed-loop transfer function Gcl, but will each have a

different DNF (W,V ). The problem of finding a unique DNF from either the behavior or

the closed-loop transfer function is known as network reconstruction, and since (W,V ) is

not unique given the behavior, additional a priori knowledge about the network, known as

the identifiability conditions, is needed to solve this problem. We do not discuss network

reconstruction or identifiability conditions in this work; however, treatments of these

ideas can be found in [19, 28].

2.4 Structured Representations of LTI Systems

We now show the conversion of a state space model to the DNF (a slight variation of the

conversion process from a state space model to a DNF contained in [1]). We then show that

we cannot convert any state space model into a DNF with entries in W that are proper and
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not necessarily strictly proper. DNFs with proper (and not necessarily strictly proper) entries

in W are essential for several applications (see, for instance, [8, 29]) and are the only networks

where well-posedness is a concern (see Corollary 2.5.9). Thus, we present the generalized

state space (GSS) model (first introduced in [30, 31]) as a representation of multiple state

space models connected in feedback and demonstrate the transformation from a GSS model

into a DNF. We then show that for any arbitrary proper DNF (W,V ), there exists a GSS

that can be converted to that DNF, meaning that the set of GSSs is rich enough to define

the entire space of proper DNFs where the set of state space models is not.

2.4.1 The State Space Model and the DNF

We begin by demonstrating the conversion from a state space model to a DNF. Suppose that

we are given an arbitrary state space model (Ā, B̄, C̄, D̄) such that

ż = Āz + B̄u,

y = C̄z + D̄u,
(2.3)

where Ā ∈ Rn×n, B̄ ∈ Rn×m, C̄ ∈ Rp×n, and D̄ ∈ Rp×m. Let C be full row rank4 (i.e.,

rankC = p).

Perform a change of basis over the states in (2.3) such that x = Tz such that

T =

[
C̄ ′ E1

]′
(2.4)

and E1 ∈ Rn×(n−p) is any basis of the null space of C̄. Note that

T−1 =

[
C̄ ′(C̄C̄ ′)−1 E1

]
,

[
R1 E1

]
. (2.5)

4The work [1] contains the procedure for dealing with a C that is not full row rank; however, any additional
insight by considering this case is not insightful for the purposes of this work; therefore, we will not treat it
here.
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With this definition, we have that

C̄T−1 =

[
(C̄C̄ ′)(C̄C̄ ′)−1 CE1

]
=

[
Ip 0

]
, (2.6)

thus the change of basis will result in a new state space model (A,B,C,D) such that

A = TĀT−1, B = TB̄, C = C̄T−1 =

[
Ip 0

]
, and D = D̄.

Now, partition (A,B,C,D) commensurate with C =

[
Ip 0

]
to get

ẋ1

ẋ2

 =

A11 A12

A21 A22


x1

x2

 +

B1

B2

u,
y =

[
I 0

]x1

x2

 + Du.

(2.7)

Assuming zero initial conditions, take the Laplace transform of (2.7) to get

sX1

sX2

 =

A11 A12

A21 A22


X1

X2

 +

B1

B2

U,
Y =

[
I 0

]X1

X2

 + DU.

(2.8)

Solve for X2 in the bottom row of the first equation in (2.8) to yield

X2 = (sI − A22)−1A21X1 + (sI − A22)−1B2U. (2.9)

Plug (2.9) into the top row of (2.8) and rearrange to get

sX1 =
[
A11 + A12(sI − A22)−1A21

]
X1 +

[
B1 + A12(sI − A22)−1B2

]
U (2.10)

, W̃X1 + Ṽ U. (2.11)
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The process, thus far, has been consistent with that outlined in [1], though in that

work, they labeled W̃ as W and Ṽ as V . We added the tilde in this work to distinguish the

intermediate step in (2.11) and the final DNF (W,V ). At this point, however, we diverge

from the previous works on DSFs. This results in

X1 =
1

s
W̃X1 +

1

s
Ṽ U , WX1 + V̂ U. (2.12)

We return to the procedure outlined in [1] while acknowledging that W here (which

corresponds to Q in the DSF) is not hollow. Assuming that (I −W ) has an inverse (we will

show, in Section 2.5, that (I −W )−1 is guaranteed to both exist and be proper since W is

strictly proper), solve for X1 = (I −W )−1V̂ U and plug this in to the equation for Y in (2.8),

resulting in Y = (I −W )−1V̂ U +DU . Rearrange to get

Y = WY +
[
V̂ + (I −W )D

]
U , WY + V U, (2.13)

which forms our final DNF (W,V ), where W ∈ RP p×p and V ∈ RP p×m.

Definition 2.4.1: Consistency

Consider a state space model (A,B,C,D) where C is full row rank. If the DNF (W,V )

is the result of applying the above process to (A,B,C,D), then we say that (W,V ) is

consistent with (A,B,C,D).

Notice that the choice of T in (2.4) is non-unique. We show, however, that (W,V ) is

consistent with the transformed state space model found from every choice of T that satisfies

(2.4).

Theorem 2.4.2 (Invariance to Bases of the Null Space): Given a state space model

(Ā, B̄, C̄, D̄) as in (2.3), consider two distinct bases of the null space of C̄, E1 and E2 with

E1 6= E2, with corresponding state transformations T1 and T2 each given by (2.4). Let (W1, V1)
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be the DNF resulting from the transformed system (A1, B1, C1, D1) = (T1ĀT
−1
1 , T1B̄, C̄T

−1
1 , D̄)

and let (W2, V2) bet the DNF resulting from the transformed system (A2, B2, C2, D2) =

(T2ĀT
−1
2 , T2B̄, C̄T

−1
2 , D̄). Then (W1, V1) = (W2, V2). ♦

Proof We defer the reader to [1], which shows that W̃ and Ṽ are invariant to a change of

basis on the null space of C̄; thus W and V will also be invariant.

We have now shown that for any state space model there exists a DNF consistent with

that model. However, the question arises about whether all DNFs (W,V ) of interest (i.e.,

all (W,V ) where W and V are proper matrices of rational polynomials of the appropriate

dimensions). It turns out that the answer is no, that the procedure above can never generate

a W that is proper but not strictly proper. We show this in Theorem 2.4.3 below.

Theorem 2.4.3: Let (W,V ) be a DNF where W ∈ RP p×p and V ∈ RP p×m, and where W

is proper but not strictly proper. Then (W,V ) is not consistent with any state space model.♦

Proof It is sufficient to show that W is always strictly proper when generated from a state

space model through the process above. We have that W̃ = A12(sI − A22)−1A21 + A11, thus

W̃ ∈ RP p×p can be viewed as the transfer function representation of the state space model

(A22, A21, A12, A11), and is therefore proper (see Lemma 2.7.5). However, 1
s

is strictly proper.

Thus, by Lemma 2.7.4, W = 1
s
W̃ must be strictly proper.

Corollary 2.4.4: Let (W,V ) be a DNF where V ∈ RP p×m and W ∈ RP p×p and W is

strictly proper. Then V is proper but not strictly proper (a) if and (b) only if D 6= 0 for any

state space model consistent with (W,V ). ♦

Proof We have that Ṽ = A12(sI − A22)−1B2 +B1, thus V ∈ RP p×m can be viewed as the

transfer function representation of the state space model (A22, A21, B2, B1), and is therefore

proper (see Lemma 2.7.5). Thus, by Lemma 2.7.4 and since 1
s

is strictly proper, V̂ = 1
s
Ṽ is

strictly proper. Also, by Theorem 2.4.3, W is likewise strictly proper.
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(a) Suppose that D 6= 0. Since W is strictly proper, no diagonal entry of W can equal

1; thus (I −W ) must be proper but not strictly proper along the diagonal entries and strictly

proper everywhere else. Thus the product of (I −W ) with D cannot cancel any of the proper

but not strictly proper elements of (I −W ), leaving (I −W )D proper but not strictly proper

as well. Moreover, since V̂ is strictly proper, it cannot cancel any of the proper but not

strictly proper elements of (I −W )D; thus the sum V = V̂ + (I −W )D must be proper but

not strictly proper.

(b) Suppose that D = 0. Then V = V̂ and is strictly proper thus concluding our

proof.

Theorem 2.4.3 may be somewhat surprising, especially in light of Lemma 2.7.6 which

shows that we can generate any proper transfer function from a state space model. However,

the result is sensible considering how properness arises in the DNF. Notice that the transfer

function G = C(sI − A)−1B + D is proper if and only if D 6= 0, and this because D is

precisely the static term mapping u to y. This static term is what adds the properness in

G, and it also, by Corollary 2.4.4, creates the properness in P . However, there are no static

terms mapping y to y or even x to x in the state space model; therefore, it is impossible to

create any static maps in W which maps y to y (and, by extension, x to x).

One may ask, therefore, whether we should even allow terms in W that are not strictly

proper. However, as we show in Example 2.4.5 below, a W that is proper but not strictly

proper can arise very naturally when we connect two DNFs in feedback; therefore, we do

wish to build a theoretical foundation allowing for such properness, which is the purpose of

the rest of this work.

Example 2.4.5

Consider two DNFs defining the relations Y1 = W1Y1 + V1E1 and Y2 = W2Y2 + V2E2.

Suppose that both DNFs are generated from state space models, meaning that W1 and

W2 are strictly proper, though V1 and V2 may be proper and not strictly proper. Suppose
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that we connect these DNFs in feedback by letting E1 = Y2 + U1 and E2 = Y1 + U2 for

some external signals U1 and U2. Then the closed-loop DNF takes the form

Y ,

Y1

Y2

 =

W1 V1

V2 W2


Y1

Y2

+

V1 0

0 V2


U1

U2


, WY + V U, (2.14)

which is also a DNF. We have that, since V1 and V2 are proper (and not necessarily

strictly proper), then W is likewise proper.

The insight that the example above gives is that, by connecting two systems in

feedback, we turn inputs u into outputs y. As explained above, static terms in state space

models give us static terms in the maping from u to y; thus, since u’s are now y’s, we can now

have static terms in the mapping from y to y allowing W to be proper and not necessarily

strictly proper.

2.4.2 The Generalized State Space Model and the DNF

As shown in the previous section, state space models are not rich enough to generate DNFs

with W that are proper and not strictly proper. However, we also showed that proper (and

not necessarily strictly proper) entries in W arise naturally when interconnecting DNFs in

feedback. Thus, if we had a state space representation that preserves information about the

feedback interconnection of subsystems (the state space model, unfortunately, does not),

we may expect that this representation could generate matrices W that are proper and not

necessarily strictly proper. Fortunately, representations do exist that preserve information

about the feedback interconnection. Such a representation was introduced in [30, 31], and is

called generalized state space (GSS) model or the complete computational structure. This
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representation is characterized by (A, Â, B, Ā, Ã, B̄, C, C̄,D) such that:

ẋ = Ax + Âw + Bu,

w = Āx + Ãw + B̄u,

y = Cx + C̄w + Du.

(2.15)

Note that, assuming (I − Ã) is non-singular, the GSS model can be uniquely converted to

the state space model by solving for w = (I − Ã)−1Āx+ (I − Ã)−1B̄u, and plugging this into

the equations for ẋ and y. However, the transformation of a GSS model into a state space

model will result in the loss of the information about the feedback interconnection within the

system.

The auxiliary variables, w, are used to characterize the intermediate computation in

the interconnection of subsystems and are thus capable of characterizing the interconnection.

We show this in the following examples:

Example 2.4.6: Feedback Interconnection as a GSS

We now illustrate that state space models connected in feedback can be represented as a

generalized state space model. Consider two state space models of the form

ẋi,1
ẋi,2

 =

Ai,11 Ai,12

Ai,21 Ai,22


xi,1
xi,2

+

Bi,1

Bi,2

 ei,
yi =

[
I 0

]xi,1
xi,2

+Diei.

(2.16)
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Stack these state equations into a generalized state space model while keeping track of

the intricacy interconnections by letting wi = yi and ei = ui + yj for j 6= i. This gives



ẋ1,1

ẋ1,2

ẋ2,1

ẋ2,2


=



A1,11 A1,12 0 0

A1,21 A1,22 0 0

0 0 A2,11 A2,12

0 0 A2,21 A2,22





x1,1

x1,2

x2,1

x2,2


+



0 B1,1

0 B1,2

B2,1 0

B2,2 0


w1

w2

+



B1,1 0

B1,2 0

0 B2,1

0 B2,2


u1

u2

 ,

w1

w2

 =

I 0 0 0

0 0 I 0




x1,1

x1,2

x2,1

x2,2


+

 0 D1

D2 0


w1

w2

+

D1 0

0 D2


u1

u2

 ,

y1

y2

 =

I 0

0 I


w1

w2

 .

Note that the resultant model is a generalized state space model of the form (2.15).

Example 2.4.7: Large-Scale Interconnection as a GSS

We now generalize Example 2.4.6 to represent the interconnection of an arbitrary number

N of state-space models. For i = 1, . . . , N , let

ẋi = Axi + Bei,

yi = Cxi + Dei,
(2.17)

with A ∈ Rni×ni , B ∈ Rni×mi , C ∈ Rpi×ni , and D ∈ Rpi×mi .

Stack these equations into a generalized state space model while keeping track of

the intricacy interconnections by (for i = 1, . . . , N) letting wi = yi and, in the manner of

[25],

ei = ui −
n∑
j=1

Hijyj, (2.18)
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where H ∈ Rpi×pj (note that we allow j = i). Let x =

[
x′1 x′2 · · · x′N

]′
and w =[

w′1 w′2 · · · w′N

]′
. Then the interconnected state space model takes the form (2.15)

with A = diag(A1, A2, · · · , AN), B = diag(B1, B2, · · · , BN), Â = −B · [Hij], Ā =

diag(C1, C2, · · · , CN), B̄ = diag(D1, D2, · · · , DN), Ã = −B̄ · [Hij], C = 0, C̄ = I, and

D = 0.

Example 2.4.7 and Example 2.4.6 highlight a few important ideas about the generalized

state space model that is generated from connecting state space models in feedback. First,

if we connect individual state space models such that the outputs of the individual models

are connected to the inputs of the other models, then the intricacy variables are defined as

precisely the union of all outputs of the individual models. Furthermore, by construction,

if we choose the output of the interconnected system to be the union of the outputs of

the individual models, then we get that the set of outputs of the interconnected system is

equivalent to the set of intricacy variables. More briefly, y = w by construction.

Furthermore, as described in the previous section, this paper is concerned only

with state space models where C is full row rank. In the interconnected model, we have

Ā = diag(C1, C2, · · · , CN ), thus rank Ā =
∑N

i=1 rankCi, meaning that Ā is also full row rank.

For this paper, we will only consider generalized state space models that have y = w

and Ā full row rank, such as those found interconnecting state space models. We call such

models Intricacy-Observed, which we define formally below.

Definition 2.4.8: Intricacy-Observed GSS

We say that a generalized state space model is intricacy observed if it is in the form

ẋ = Ax + Âw + Bu,

w = Āx + Ãw + B̄u,

y = w,

(2.19)
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where Ā is full row rank.

We now proceed with the process of converting an Intricacy-Observed GSS into a DNF.

Since Ā is full row rank, there exists a change of basis T over w such that Ā is in

[
I 0

]
form

(it is the same T that converted C into

[
I 0

]
form in the previous section). Transform (2.19)

by T . For simplicity, we overload notation and say that the resultant transformed system

(after partitioning the remaining matrices commensurate with Ā and taking advantage of the

identity y = w) is given as follows:

ẋ1

ẋ2

 =

A11 A12

A21 A22


x1

x2

+

Â1

Â2

 y +

B1

B2

u,
y =

[
I 0

]x1

x2

+ Ãy + B̄u.

(2.20)

We proceed in much the same manner as in Section 2.4.1. Take the Laplace transform

of (2.20) to get

sX1

sX2

 =

A11 A12

A21 A22


X1

X2

+

Â1

Â2

Y +

B1

B2

U,
Y =

[
I 0

]X1

X2

+ ÃY + B̄U.

(2.21)

Solve for X2 in the bottom row of the first equation in (2.21) to get

X2 = (sI − A22)−1A21X1 + (sI − A22)−1Â2Y

+ (sI − A22)−1B2U. (2.22)

Plug (2.22) back in to the top row of the first equation in (2.21) and rearrange to get

sX1 =
[
A11 + A12(sI − A22)−1A21

]
X1

35



www.manaraa.com

+
[
Â1 + A12(sI − A22)−1Â2

]
Y

+
[
B1 + A12(sI − A22)−1B2

]
U (2.23)

, W̃X1 + R̃Y + Ṽ U. (2.24)

Divide both sides of (2.24) by s to get

X1 =
1

s
W̃X1 +

1

s
R̃Y +

1

s
Ṽ U (2.25)

, ŴX1 + R̂Y + V̂ U. (2.26)

Since (I−Ŵ ) has an inverse (this is always guaranteed for the same reasons it was guaranteed

in Section 2.4.1), we can solve for X1 to get

X1 = (I − Ŵ )−1R̂Y + (I − Ŵ )−1V̂ U. (2.27)

Plug (2.27) into the equation for Y in (2.21) to get

Y = (I − Ŵ )−1R̂Y + (I − Ŵ )−1V̂ U + ÃY + B̄U. (2.28)

Finally, rearrange to get

Y =
[
Ŵ + R̂ + (I − Ŵ )Ã

]
Y +

[
V̂ + (I − Ŵ )B̄

]
U (2.29)

, WY + V U, (2.30)

which forms our final DNF.

With this definition, we are prepared to show that the information contained in Ã

and B̄ is preserved in the DNF as well, an idea which is important later in this work. We

formalize and show this idea in Lemma 2.4.9 below.
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Lemma 2.4.9: Let (A, Â, B, Ā, Ã, B̄) parameterize some generalized state space model of

the form (2.19) and suppose that (W (s), V (s)) is the DNF consistent with this model. Then

W (∞) , lims→∞W (s) = Ã and V (∞) , lims→∞ V (s) = B̄. ♦

Proof We have, by (2.30), that W (s) = Ŵ + R̂ + (I − Ŵ )Ã, where Ŵ and R̂ are both

strictly proper (see the proof Theorem 2.4.3 for the justification of strict properness). Then,

by Lemma 2.7.10, Lemma 2.7.11, and Lemma 2.7.9:

W (∞) = lim
s→∞

[
Ŵ + R̂ + (I − Ŵ )Ã

]
=
[

lim
s→∞

Ŵ
]

+
[

lim
s→∞

R̂
]

+
(
I −

[
lim
s→∞

Ŵ
]
Ã
)

= 0 + 0 + (I − 0)Ã = Ã.

Similarly, since V̂ is strictly proper

V (∞) = lim
s→∞

[
V̂ + (I − Ŵ )B̄

]
=
[

lim
s→∞

V̂
]

+
(
I −

[
lim
s→∞

Ŵ
])
B̄

= 0 + (I − 0)B̄ = B̄,

as desired.

Our purpose for introducing the set of intricacy-observed GSS’s was to provide an

equivalent set to the set of all possible (proper) DNFs. We have shown above that every

generalized state space model of the form (2.19) with Ã 6= 0 results in a proper DNF. We

now need to show that every proper DNF has a realization of the form (2.19). We do this in

Theorem 2.4.10 below.
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Theorem 2.4.10: Let (W,V ) be an arbitrary well-posed5 DNF where W ∈ RP p×p and

V ∈ RP p×m. Then a generalized state space model of the form (2.19) exists such that (W,V )

is consistent with that model. ♦

Proof We show this by construction. By Lemma 2.4.9, we have that Ã = W (∞) and

B̄ = V (∞). Choose any strictly proper R̂ of the appropriate dimensions (e.g. R̂ = (W − Ã)/2

or R̂ = 0). We have, by (2.30), that

W = Ŵ + R̂ + (I − Ŵ )Ã = Ŵ (I − Ã) + R̂ + Ã,

thus

Ŵ = ((W − Ã)− R̂)(I − Ã)−1, (2.31)

where the assumption of well-posedness guarantees that (I − Ã) is non-singular (see The-

orem 2.5.8 in Section 2.5). Note that, since Ã = W (∞), (W − Ã) will be strictly proper.

Hence, by Lemma 2.7.3, Ŵ is also strictly proper.

We also have from (2.30) that

V̂ = V − (I − Ŵ )B̄. (2.32)

Note that lims→∞ V̂ = lims→∞(V − B̄)− Ŵ B̄ = 0 since V − B̄ = V − V (∞) and Ŵ B̄ are

strictly proper, thus V̂ must also be strictly proper by Lemma 2.7.9.

Define W̃ = sŴ , R̃ = sR̂, and Ṽ = sV̂ . Since Ŵ , R̂, and V̂ are all strictly proper

and the product of s with these can only increase the degree of the numerator by one, we

have that W̃ , R̃, and Ṽ will all be proper.

Consider the augmented matrix Φ =

[
W̃ R̃ Ṽ

]
. Since Φ is a proper matrix of ratio-

nal polynomials, we can treat it as a transfer function with a state realization (AΦ, BΦ, CΦ, DΦ)

such that Φ = CΦ(sI − AΦ)−1BΦ +DΦ (Lemma 2.7.6). Partition (AΦ, BΦ, CΦ, DΦ) commen-

5See Section 2.5.
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surate with Φ and label the partitions as follows:

AΦ , A22, BΦ ,

[
A21 Â2 B2

]
,

CΦ , A12, DΦ ,

[
A11 Â1 B1

]
.

Construct the following generalized state space model:

ẋ1

ẋ2

 =

A11 A12

A21 A22


x1

x2

+

Â1

Â2

w +

B1

B2

u,
w =

[
I 0

]x1

x2

+ Ãw + B̄u,

y = w.

This model is in the form (2.19), and by construction, it will yield (Q,P ) when the process

above is followed.

Example 2.4.11

We return to Example 2.4.5, where we connected two DNFs in feedback. Let each DNF

(Qi, Pi), i ∈ {1, 2}, have the following state realization:

ẋi,1
ẋi,2

 =

Ai,11 Ai,12

Ai,21 Ai,22


xi,1
xi,2

+

Bi,1

Bi,2

 ei,
wi =

[
I 0

]xi,1
xi,2

+Diei.

(2.33)
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Using the process for finding a DNF outlined in Section 2.4.1, we get the following

equations for each system i:

W̃i = Ai,11 + Ai,12(sI − Ai,22)−1Ai,21

Ṽi = Bi,1 + Ai,12(sI − Ai,22)−1Bi,2

Wi =
1

s
W̃i

V̂i =
1

s
Ṽi

Vi = V̂i + (I −Wi)Di

Stack the state equations into a generalized state space while keeping track of the

intricacy interconnections by letting y = w and ei = ui + wj for j 6= i. The resultant

generalized state space model is given in Example 2.4.6. Convert this generalized state

space model to Ā =

[
I 0

]
form by creating a transformation T that permutes x1,2 with

x2,1. This gives, in the notation for the intricacy-observed GSS:

A11 =

A1,11 0

0 A2,11

 , A12 =

A1,12 0

0 A2,12

 ,
A21 =

A1,21 0

0 A2,21

 , A22 =

A1,22 0

0 A2,22

 ,
Â1 =

 0 B1,1

B2,1 0

 , Â2 =

 0 B1,2

B2,2 0

 ,
B1 =

B1,1 0

0 B2,1

 , B2 =

B1,2 0

0 B2,2

 ,
Ã =

 0 D1

D2 0

 , B̄ =

D1 0

0 D2

 .
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Solve for W̃ , R̃, and Ṽ in (2.24) to give:

W̃ =

W̃1 0

0 W̃2

 , Ṽ =

Ṽ1 0

0 Ṽ2

 , R̃ =

 0 Ṽ1

Ṽ2 0

 ,
thus,

Ŵ =

W1 0

0 W2

 , V̂ =

V̂1 0

0 V̂2

 , R̂ =

 0 V̂1

V̂2 0

 .
We have that

W = Ŵ + R̂ + (I − Ŵ )Ã =

 W1 V̂1 + (I −W1)D1

Ṽ2 + (I −W2)D2 W2

 =

W1 V1

V1 W1

 .
Similarly, we have that

V = V̂ + (I − Ŵ )B̄

=

V̂1 + (I − Ŵ1)B̄1 0

0 V̂2 + (I − Ŵ2)B̄2

 =

V1 0

0 V2

 .
Thus the final DNF defines the relationship

Y ,

Y1

Y2

 =

W1 V1

V2 W2


Y1

Y2

+

V1 0

0 V2


U1

U2


, WY + V U. (2.34)

Notice that Equation (2.34) is the same as Equation (2.14), meaning that the process of

converting the generalized state space representing two systems in feedback results in the
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same network as that created by connecting the DNFs corresponding to the two systems

in feedback.

2.5 Well-Posedness of LTI Network Systems

We now turn our attention to a definition of well-posedness of DNFs and generalized state

space models.

2.5.1 Well-Posedness of Large-Scale Interconnected Systems

One of the earliest treatments of studying the well-posedness of networks containing the

interconnection of more than two systems is found in [25]. This work is concerned with

networks of the form

ei = ui −
∑m

j=1 Hijyj,

yi = Giei.
(2.35)

Note that [25] defines and then provides sufficient (but not necessary) conditions for the well-

posedness of such networks when Hij and Gi are arbitrary (non-linear) operators. However,

to find necessary and sufficient conditions, it then restricts its attention to the case where Gi

and Hij are LTI operators (which is also the focus of our work). In this case, [25] gives the

following definition for well-poosedness:

Definition 2.5.1: Well-Posedness (Vidyasagar)

The network system (2.35), with every Gi and Hij as an LTI operator, is said to be

well-posed if the following conditions hold: l

(V1) For each set of input signals u, there exists a unique set of error signals e and a set

of output signals y such that the equations (2.35) are satisfied.

(V2) The dependence of e and y on u is causal.
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(V3) For each finite T , the dependence of PT e and PTy on PTu is Lipschitz continuous,

where, for any signal x, PTx is the truncation of x to the interval [0, T ].

Since each operator Hij and Gi are LTI, we can write (2.35) as matrix multiplications

as follows:

e = u−Hy

y = Ge,
(2.36)

where G ∈ RP p×p is block diagonal6 and H ∈ RP p×p is arbitrary.

The necessary and sufficient conditions, shown in [25], for (2.36) to be well-posed

according to Definition 2.5.1 are that

det (I +H(∞)G(∞)) 6= 0. (2.37)

In other words, in light of Lemma 2.7.7, (2.36) is well-posed if and only if (I −HG) has a

proper inverse.

The conversion of (2.36) to a DNF depends on whether e or y is manifest. If e is

manifest, we can plug the bottom row in to the top to get

e = u−HGe, (2.38)

thus W = −HG and V = I. If y is manifest instead, we can plug the top row into the bottom

to get

y = Gu−GHy, (2.39)

thus W = −GH and V = G. Since det(I + G(∞)H(∞)) = det(I + H(∞)G(∞)) (see

Lemma 2.7.12), the conditions of well-posedness for both (2.38) and (2.39) are that (I−W (∞))

has an inverse, or, equivalently, that (I −W ) has a proper inverse (Lemma 2.7.7).

6Since each Gi is MIMO and arbitrary, arbitrary (full) G can be found by considering an interconnection
of exactly one system.
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We remark, however, that in both (2.38) and (2.39), the DNF formed takes a very

special form. In the first, V = I, and in the second, V is square, block diagonal, and a

left factor of W . We wish to generalize these conditions to the case where V ∈ RP p×m is

arbitrary.

Before we tackle the more general conditions, however, we will explore the implications

of the well-posedness conditions of (2.38) and (2.39) on the closed-loop transfer function

(from inputs to outputs) Gcl = (I −W )−1V .

Proposition 2.5.2: Let (W,V ) be a proper DNF such that either V = I or V is square, block

diagonal, and a left factor of W . Then (W,V ) is well-posed if and only if Gcl = (I −W )−1V

exists, is unique, and is proper. ♦

Proof In the case where V = I, this follows immediately since Gcl = (I−W )−1, and (W,V )

is well-posed if and only if (I −W )−1 exists and is proper.

Now we consider the case where V is square, block diagonal, and a left factor of

W . In particular, let V = G ∈ RP p×p and W = −GH where H ∈ RP p×p. Suppose that

(I −W ) = (I +GH) has a proper inverse. Since both G ∈ RP p×p and (I +GH)−1 ∈ RP p×p,

we have that Gcl = (I +GH)−1G ∈ RP p×p; hence Gcl exists, is unique, and is proper.

Now suppose that (Q,P ) is not well-posed. We have two sub-cases to consider. The

first is where (I +GH) does not have an inverse. In this sub-case, either Gcl does not exist

or is not unique. The second is where (I +GH) does have an inverse, but the inverse is not

proper. In this sub-case, Gcl = (I +GH)−1G does exist and is unique, thus we need to show

that Gcl is improper to conclude the proof.

Assume, to the contrary, that Gcl is proper. Then, by Lemma 2.7.3 and Lemma 2.7.4,

GclH − I is also proper. We have that

GclH − I = (I +GH)−1GH − I

= (I +GH)−1 (GH − (I +GH)))

= −(I +GH)−1.
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But, we have already assumed that (I +GH)−1 is improper, meaning that −(I +GH)−1 =

GclH − I is also improper by Lemma 2.7.4, providing our contradiction.

Thus, by Proposition 2.5.2, well-posedness of interconnected systems (Definition 2.5.1)

is equivalent to a check to see if the closed-loop transfer function exists, is unique, and

is proper. This is sensible since only one of e or y is observed, and thus the existence,

uniqueness, and properness of the closed-loop transfer function from u to e (or y) imply

conditions (V1)-(V3) and vice-versa.

2.5.2 Well-Posedness of DNFs

As described in the previous section, when analyzing the set of interconnected systems

considered by Vidyasagar, well-posedness is equivalent to the existence, uniqueness, and

properness of the closed-loop transfer function. However, the set DNFs is a strict generalization

of the set of interconnected systems considered by Vidyasagar in that V need not be the

identity, a left factor of W , or even square. In this more general case, the invertibility of

(I−W (∞)) is a sufficient condition to guarantee the existence, uniqueness, and properness of

the closed loop transfer function; however, it is not necessary (see Proposition 2.5.3 below).

Proposition 2.5.3: Consider a DNF (W,V ) where W ∈ RP p×p and V ∈ RP p×m. If (I−W )

has a proper inverse, then Gcl = (I −W )−1V exists, is unique, and is proper. ♦

Proof If (I −W ) has a proper inverse, then by Lemma 2.7.4, Gcl = (I −W )−1V exists, is

unique, and is proper. However, to show that this condition is not necessary, we consider a

counter example. Let

W =

 0 s+1
s+2

s+1
s+3

0

 , V =

 1
s+4

0

0 1
s+5

 . (2.40)
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Then

(I −W )−1 =

 (s+2)(s+3)
(3s+5)

(s+1)(s+3)
(3s+5)

(s+1)(s+2)
(3s+5)

(s+2)(s+3)
(3s+5)

 (2.41)

is improper. However

Gcl = (I −W )−1V =

 (s+2)(s+3)
(s+4)(3s+5)

(s+1)(s+3)
(s+4)(3s+5)

(s+1)(s+2)
(s+5)(3s+5)

(s+2)(s+3)
(s+5)(3s+5)

 (2.42)

exists, is unique, and is proper.

Note, however, the existence of a proper inverse of (I −W ) in Proposition 2.5.3 is

not necessary to guarantee that Gcl exists, is unique, and is proper. We wish to discover

the necessary and sufficient conditions for the well-posedness of general DNFs, and we seek

to show that the necessary and sufficient conditions are that (I −W ) has a proper inverse,

as it was in the previous section. However, if we adhere to Definition 2.5.1, and since we

only measure signals y and u, the definition would seem to suggest that the necessary and

sufficient conditions for well-posedness are that Gcl = (I −W )−1V exists, is unique, and is

proper.

Nonetheless, as indicated by Proposition 2.5.3, the existence of a proper inverse of

(I −W ) is sufficient to guarantee well-posedness of (W,V ) and it is also necessary for almost

every (W,V ). In order for Gcl to exist, be unique, and proper when (I −W ) does not have a

proper inverse, V needs to be in a way “special.” For instance, the counterexample in the

proof of Proposition 2.5.3 was generated by forcing V to be strictly proper with degrees in

the denominator large enough to cancel the improperness of (I −W )−1. Moreover, if we

required V to be proper, we would have to engineer it in a way such that we exactly cancel

any improperness in (I −W )−1. Thus, if our specially-engineered V were to be perturbed

slightly in either of these scenarios, then Gcl would suddenly become improper.

Definition 2.5.1 was built upon the work of Jan Willems [21], which contains an

additional condition for well-posedness that [25] acknowledged but did not include as it was
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unnecessary to that work. This additional condition suggests that small perturbations to

the model should not result in a well-posed model suddenly becoming ill-posed. This idea is

justified in that well-posedness is a statement on whether our model is a good approximation

of reality. As our models will never be perfect representations of reality, well-posedness should

not be sensitive to errors in our models.

As such, we use an expanded definition of well-posedness7 over DNFs based on both

[21] and [25].

Definition 2.5.4

Let (W,V ) be a proper DNF. Then (W,V ) is said to be well-posed if:

(W1) The closed-loop transfer function Gcl = (I −W )−1V mapping u to y exists and is

unique.

(W2) The map from u to y is causal (i.e., Gcl is proper)

(W3) For each finite T , the dependence of PTy on PTu is Lipschitz continuous, where,

again, PT is the truncation operator

(W4) If (W1)-(W3) hold for (W,V ), then small perturbations to W and V do not cause

these conditions to fail.

With Definition 2.5.4, we are now prepared to provide the necessary and sufficient

conditions for the well-posedness of arbitrary DNFs.

Proposition 2.5.5: Let (W,V ) be an arbitrary DNF with W ∈ RP p×p and V ∈ RP p×m.

Then (W,V ) is well-posed according to Definition 2.5.4 (a) if and (b) only if (I −W ) has a

proper inverse. ♦

Proof (a) Suppose (I−W ) has a proper inverse. Then, by Proposition 2.5.3, conditions (W1)-

(W3) of Definition 2.5.4 hold. Furthermore, it is well-known that invertible matrices are dense

7Note that the works [21] and [32] use all four conditions listed here, where [25] and [23] only use conditions
(W1-W3) as described in Section 2.5.1, [22] uses only conditions (W1-W2), and [24] only uses condition (W1).
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in the space of square matrices. By Lemma 2.7.7, we have that lims→∞(I−W ) ∈ Rp×p is non-

singular. Thus if we choose Wδ at random, then, with probability one, lims→∞(I −W )− εWδ

will also be non-singular for any small ε > 0, hence (I − (W + εWδ)) has a proper inverse by

Lemma 2.7.7 and (W1)-(W3) still hold since V + εVδ is proper.

(b) Suppose (I −W ) does not have a proper inverse. If the inverse of (I −W ) does

not exist, then Gcl does not exist and condition (W1) fails. If (I −W )−1V is not proper,

condition (W2) fails. Suppose, however, that (I −W )−1 exists and is improper and that

Gcl = (I −W )−1V is proper8. Thus, there exists an i, j ∈ {1, . . . , p} such that [(I −W )−1]ij

is improper. Let

sign
([

(I −W )−1
])

=

 1 if [Gcl]ik ≥ 0

−1 otherwise.

Let [Vδ]k1 = sign ([(I −W )−1]) for k = 1, . . . , p. Then
∑p

k=1 [(I −W )−1] [Vδ]k1 must be

improper; hence (I − W )−1Vδ, and therefore (I − W )−1(V + εVδ) for any ε > 0 is also

improper. Thus condition (W4) fails.

2.5.3 Well-Posedness of the Generalized State Space Model

Since the intricacy-observed generalized state space model represents the interconnection of

state space models in feedback, we wish to study the well-posedness of these models as well.

Definition 2.5.6

Interconnected state space models, such as the generalized state space model, are said to

be well-posed if the output signals y exist and are unique given any choice of inputs u

and state variables x [27].

With (2.5.6), we are prepared to give the necessary and sufficient conditions for the

well-posedness of a generalized state space model.

8As a minor note, in this case, we must have m > 0 (where m is the number of columns in V ) since if
m = 0, Gcl = (I −W )−1 is improper by assumption.
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Proposition 2.5.7: Let (A, Â, B,

[
I 0

]
, Ã, B̄) parameterize an intricacy-observed gener-

alized state space of the form (2.19). Then this GSS is well-posed if and only if (I − Ã) is

invertible. ♦

Proof By solving for w and noting that y = w, we have that

ẋ =
[
A + Â(I − Ã)−1Ā

]
x +

[
B + Â(I − Ã)−1B̄

]
u,

y = (I − Ã)−1Āx + (I − Ã)−1B̄u.

If (I − Ã)−1 is invertible, then this is a standard state space model and y exists and can

be computed uniquely given any x and u. If (I − Ã)−1 is not invertible, then there exists a

choice of x and u such that y either does not exist or is not unique.

From Lemma 2.4.9, notice that, for any DNF (W (s), V (s)) and any intricacy-observed

generalized state space realization (A, Â, B, Ā, Ã, B̄) of (W (s), V (s)), we have that (I −

W (∞)) = (I − Ã). Thus, Proposition 2.5.7 implies that (W (s), V (s)) is well-posed if and

only if every intricacy-observed GSS realization of (W (s), V (s)) is also well-posed.

2.5.4 Summary of Well-Posedness Results

In summary, we can combine the previous results to get the following equivalent statements

about the well-posedness of a DNF.

Theorem 2.5.8: Let (W (s), V (s)) be a DNF with W (s) ∈ RP p×p and V (s) ∈ RP p×m.

Then the following are equivalent:

(T1) (W (s), V (s)) is well-posed by Definition 2.5.4.

(T2) (I −W (s)) has a proper inverse.

(T3) (I −W (∞)) = lims→∞(I −W (s)) is invertible.

(T4) Every intricacy-observed generalized state space realization of (W (s), V (s)) is well-posed.

♦
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Proof The equivalence of (T1) and (T2) is given by Proposition 2.5.5. The equivalence of

(T2) and (T3) is a restatement of Lemma 2.7.7. The equivalence of (T3) and (T4) follows

from Lemma 2.4.9 and Proposition 2.5.7.

Corollary 2.5.9: Let (W (s), V (s)) be a proper DNF where all entries in W (s) are strictly

proper. Then this DNF is well-posed. ♦

Proof Follows immediately from Theorem 2.5.8 and Lemma 2.7.9.

To demonstrate the synthesis of ideas contained in Theorem 2.5.8, we return to our

running example.

Example 2.5.10

In 2.4.11, we connected two systems in feedback with static terms D1 and D2 respectively.

The well-known condition for well-posedness of this interconnected systems is that

I −

 0 D1

D2 0

 (2.43)

is non-singular, or equivalently, that det(I −D1D2) 6= 0.

Also in Example 2.4.11, we represented this interconnection using a generalized

state space, with I − Ã precisely as given in (2.43); thus the conditions on the well-

posedness of the generalized state space are precisely the conditions of well-posedness of

the two systems connected in feedback.

Furthermore, we can convert this interconnection into a DNF either by (i) trans-

forming both state space models into a DNF through the process contained in Section

2.4.1 and then connecting the DNFs in feedback (as shown in Example 2.4.5) or by (ii)

stacking the state space models into a generalized state space model and converting

that into a DNF through the process contained in Section 2.4.2 (as shown in Example

2.4.11). Regardless of the approach, the resultant DNF (W (s), V (s)) is the same, with
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Y1 Y2

w21(s)

w12(s)

(a) A network with two links
in feedback, which is well-
posed if and only if 1 −
w12(s)w21(s) 6= 0.

Y1

Y2 Y3

w21(s)

w32(s)

w13(s)

(b) A network with three
links oriented in a ring, which
is well-posed if and only if
1 − w13(∞)w21(∞)w32(∞) 6=
0.

Y1

Y2 Y3

w21(s)

w12(s) w31(s)

w13(s)

(c) A network four links,
which is well-posed if and
only if 1 − w12(∞)w21(∞) −
w23(∞)w32(∞) 6= 0.

Figure 2.1 Example networks and their well-posedness properties as discussed in Sections
2.6.1, 2.6.2, and 2.6.3 respectively.

(for i ∈ {1, 2}):

W (s) =

W1(s) V1(s)

V2(s) W2(s)

 , (2.44a)

Wi(s) =
1

s

[
Ai,11 + Ai,12(sI − Ai,22)−1Ai,21

]
(2.44b)

Vi(s) = V̂i + (I −Qi)Di, with (2.44c)

V̂i(s) =
1

s

[
Bi,1 + Ai,12(sI − Ai,22)−1Bi,2

]
.

Since Wi(s) and V̂i(s) are strictly proper (as expected by Theorem 2.4.3), we have that

Wi(∞) = 0 and Vi(∞) = Di. Thus I −W (∞) is also precisely (2.43) and the conditions

of well-posedness on the DNF given in Theorem 2.5.8 are precisely the same as that on the

generalized state space model as well as the feedback interconnection of the component

state space models.
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2.6 Additional Examples

We now include three additional examples that were first presented in [14] to further illustrate

Theorem 2.5.8. These examples show that the conditions of well-posedness contained in

Theorem 2.5.8 can lead to non-intuitive results.

2.6.1 Two Links in Feedback

Consider an arbitrary W (s) ∈ RP 2×2 as shown in Figure 2.1a. Then

I −W (∞) =

 1 −w12(∞)

−w21(∞) 1

 ,
where each wij(s) is a SISO transfer function (i.e., wij(∞) is a scalar). In other words, this

system contains a cycle at (Y1, Y2, Y1). This system is well-posed if and only if det(I−W (∞)) 6=

0, which holds if and only if 1− w12(∞)w21(∞) 6= 0.

Note that this is precisely the well-known condition for well-posedness of two SISO

systems connected in feedback. It is also a special case of Example 2.5.10 where, for

i, j ∈ {1, 2}, i 6= j, we have (Wi, Vi) = (0, wij(s)).

2.6.2 A Ring

Let W (s) ∈ RP 3×3 where links are oriented in a ring such as that shown in Figure 2.1b.

Without loss of generality, let

(I −W (∞)) =


1 0 −w13(∞)

−w21(∞) 1 0

0 −w32(∞) 1

 .

By Theorem 2.5.8, this system is well-posed if and only if det(I −W (∞)) 6= 0 which is true

if and only if 1− w13(∞)w21(∞)w32(∞) 6= 0.
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2.6.3 The Adjoining of Two Feedback Loops

Let W (s) ∈ RP 3×3 be defined as shown in Figure 2.1c. Thus

I −W (∞) =


1 −w12(∞) 0

−w21(∞) 1 −w23(∞)

0 −w32(∞) 1

 .

By Theorem 2.5.8, the condition of well-posedness of this system is that 1−w12(∞)w21(∞)−

w23(∞)w32(∞) 6= 0.

Notice from Figure 2.1c that this example contains two cycles of the type described in

Section 2.6.1, namely (y1, y2, y1) and (y2, y3, y2). However, the condition (1−w12(∞)w21(∞)−

w23(∞)w32(∞) 6= 0) is different than the union of conditions on the individual loops (1 −

w12(∞)w21(∞) 6= 0 and 1− w23(∞)w32(∞) 6= 0). As such, it is possible for each of the two

cycles to be ill-posed, but the overall system adjoining these two cycles at output 2 is actually

well-posed.

To illustrate this, let

I −W (∞) =


1 −.5 0

−2 1 −2

0 −.5 1

 .

Notice that the cycle (y1, y2, y1) is ill-posed since 1−w12(∞)w21(∞) = 1−(.5)(2) = 0. Likewise,

the cycle (y2, y3, y2) is ill-posed since 1−w23(∞)w32(∞) = 1−(2)(.5) = 0. However, the overall

system is actually well-posed since 1−w12(∞)w21(∞)−w23(∞)w32(∞) = 1−(.5)(2)−(2)(.5) =

−1 6= 0.
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It is also possible to adjoin two well-posed cycles to make the overall system ill-posed.

To illustrate this, let

I −W (∞) =


1 −.5 0

−1 1 −1

0 −.5 1

 .
Notice that the cycle (y1, y2, y1) is well-posed since 1−w12(∞)w21(∞) = 1− (.5)(1) = .5 6= 0.

Likewise, the cycle (y2, y3, y2) is well-posed since 1− w23(∞)w32(∞) = 1− (1)(.5) = .5 6= 0.

However, the overall system is actually ill-posed since 1−w12(∞)w21(∞)−w23(∞)w32(∞) =

1− (.5)(1)− (1)(.5) = 0.

2.7 Appendix

Consider a polynomial p(s) in terms of s ∈ C. Then the degree of p(s), written deg p(s),

is the highest degree of its monomials with non-zero terms. We say that g(s) is a rational

polynomial if it can be written as g(s) = n(s)
d(s)

, where n(s) and d(s) are both polynomials. If

deg n(s) ≤ deg d(s), we say that g(s) is proper, and if deg n(s) < deg d(s), we say that g(s)

is strictly proper.

Given these definitions and the definitions in Section 2.2, we can list several results

on matrices of rational polynomials that we use throughout this work, which are well known.

The first several are known and pertain to the closure of arithmetic over proper and strictly

proper rational polynomials and matrices of rational polynomials.

Lemma 2.7.1: Let p(s) and q(s) be rational polynomials. If p(s) and q(s) are proper, then

p(s) + q(s) is proper. Furthermore if both are strictly proper, then the sum is likewise strictly

proper. �
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Proof Let p(s) = np(s)

dp(s)
and q(s) = nq(s)

dq(s)
for polynomials np(s), nq(s), dp(s), dq(s). By

assumption, deg np(s) ≤ deg dp(s) and deg nq(s) ≤ deg dq(s). Then

p(s) + q(s) =
np(s)dq(s) + nq(s)dp(s)

dp(s)dq(s)
,
n(s)

d(s)
.

We have, by properties of polynomial degrees, that

deg n(s) = max (deg np(s) + deg dq(s), deg nq(s) + dp(s))

≤ max (deg dp(s) + deg dq(s), deg dq(s) + dp(s))

= deg dp(s) + deg dq(s) = deg d(s),

thus the sum of proper rational polynomials is proper.

To show that the sum of strictly proper rational polynomials is strictly proper, replace

the inequalities above with strict inequalities.

Lemma 2.7.2: Let p(s) and q(s) be rational polynomials. If p(s) and q(s) are proper, then

p(s)q(s) is proper. Furthermore if one of p(s) and q(s) is strictly proper, then the product is

likewise strictly proper. �

Proof Let p(s) = np(s)

dp(s)
and q(s) = nq(s)

dq(s)
for polynomials np(s), nq(s), dp(s), dq(s). By

assumption, deg np(s) ≤ deg dp(s) and deg nq(s) ≤ deg dq(s). Then

p(s)q(s) =
np(s)nq(s)

dp(s)dq(s)
,
n(s)

d(s)
.

We have, by properties of polynomial degrees, that

deg n(s) = deg np(s) + deg nq(s) ≤ deg dp(s) + deg dq(s) = deg d(s).

Thus the product of proper rational polynomials is proper.
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Without loss of generality, assume that p(s) is strictly proper and q(s) is proper. Then

deg np(s) < deg dp(s). We thus have

deg n(s) = deg np(s) + deg nq(s) < deg dp(s) + deg dq(s) = deg d(s).

Thus the product of proper rational polynomials, where one is strictly proper, is likewise

strictly proper.

Lemma 2.7.3: Let M(s) and N(s) be proper matrices of rational polynomials, each of

dimension m×n. Then M(s) +N(s) is likewise proper. Furthermore, if both M(s) and N(s)

are strictly proper, the sum is also strictly proper. �

Proof Follows immediately from Lemma 2.7.1 and the fact that [M(s)+N(s)]ij = [M(s)]ij+

[N(s)]ij.

Lemma 2.7.4: Let M(s) be a matrix of rational polynomials of dimension p×m, and let

N(s) be a matrix of rational polynomials of dimension m× n. If M(s) and N(s) are both

proper, then M(s)N(s) is proper. Likewise, if one of M(s) and N(s) are strictly proper, then

the product is also strictly proper. �

Proof This follows immediately from Lemma 2.7.1, Lemma 2.7.2, and the fact that

[M(s)N(s)]ij =
∑m

k=1[M(s)]ik[N(s)]kj.

We now discuss the relationship between proper matrices of rational polynomials and

state space models. See [27] for a discussion of these results.

Lemma 2.7.5: Let (A,B,C,D) characterize a system as given by the state space equations

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(2.45)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.
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Then the rational polynomial G(s) = C(sI − A)B +D representation of that system

is proper; i.e., G(s) ∈ RP p×m. �

Proof See [27], pp. 92-93.

Lemma 2.7.6: Let G(s) ∈ RP p×m be an arbitrary proper matrix of rational polynomials.

Then G(s) = C(sI − A)−1B + D for some choice of A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and

D ∈ Rp×m. In other words, the set RP p×m of all proper matrices of rational polynomials is

equal to the set of state space transfer functions with m inputs and p outputs. �

Proof See [27], pp. 93-94.

The next result, from [27, 33], gives conditions for when G(s) has a proper inverse.

Lemma 2.7.7: Let G(s) be a square and proper matrix of rational polynomials. Then the

inverse of G(s) exists and is proper (a) if and (b) only if G(∞) , lims→∞G(s) is non-

singular. �

Proof Since G(s) is proper, by Lemma 2.7.6, it has a state space representation (A,B,C,D)

with A ∈ Rn×n for some n, B ∈ Rn×p, C ∈ Rp×n and D ∈ Rp×p, where G(s) = C(sI −

A)−1B +D. It follows that G(∞) = lims→∞G(s) = D (since (sI − A)−1 → 0 as s→∞).

(a) Suppose that G(∞) = D is non-singular. Then, using the Sherman-Morrison-

Woodbury formula, we can express G−1 as

G−1(s) =
(
C(sI − A)−1B +D

)−1

= −D−1C(sI − A+BD−1C)−1BD−1 +D−1

, C̃(sI − Ã)−1B̃ + D̃,

where sI−A+BD−1C is invertible due to the s terms appearing on the diagonal and only the

diagonal. Since G−1(s) is the transfer function representation of the state space (Ã, B̃, C̃, D̃),

by Lemma 2.7.5, G−1(s) must be proper.
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(b) Let G(s) be proper but suppose that G(∞) is singular. We must show that either

G(s) does not have an inverse or that the inverse of G(s) is improper.

For brevity, we write G(s) = Ĝ(s) + D, where Ĝ(s) = C(sI − A)−1B, where again,

A, B, C, and D are of the proper dimensions and D = G(∞). This time, adding Ĝ(s) to

D could potentially increase the rank of the sum, leaving us with two cases. The first case

occurs where the rank of the sum is still deficient, meaning G(s) is not invertible, and no

further analysis is needed. The second and more interesting case occurs when Ĝ(s) added to

D increases the rank of the sum sufficiently that G(s) is invertible. We must show that, in

this case, G−1(s) is improper.

Assume, to the contrary, that G−1(s) is proper. Then G−1(s) has a state space

realization (Ã, B̃, C̃, D̃) such that G−1(s) = C̃(sI − Ã)−1B̃ + D̃ , G̃(s) + D̃. Furthermore,

we have that

G−1(s)G(s) =
(
G̃(s) + D̃

)(
Ĝ(s) +D

)
= G̃(s)Ĝ(s) + G̃(s)D + D̃Ĝ(s) + D̃D

= I.

Since G̃(s)Ĝ(s), G̃(s)D, and D̃Ĝ(s) are all strictly proper, their sum must be zero, leaving

D̃ = D−1. However, this contradicts our original assumption that D is not invertible. Thus

G−1(s) must be improper.

We now wish to give results about limits of a proper matrix of rational polynomials

M(s) as s→∞.

Lemma 2.7.8: Let g(s) be a proper rational polynomial. Then g(∞) , lims→∞ g(s) = 0 (a)

if and (b) only if g(s) is strictly proper. �

Proof (a) Suppose g(s) is strictly proper. Since the degree of the denominator of g(s) is

strictly larger than the degree of the numerator, the limit will approach zero.
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(b) Suppose that g(s) is proper but not strictly proper. Since the degree of the

denominator of g(s) is equal to the degree of the numerator, the limit will approach n
d
6= 0,

where n is the coefficient of the highest-order monomial and d is the coefficient of the

highest-order monomial in the denominator.

Lemma 2.7.9: Let M(s) be an arbitrary matrix of rational polynomials. Then M(∞) ,

lims→∞M(s) = 0 if and only if M(s) is strictly proper. �

Proof Follows immediately from Lemma 2.7.8.

Lemma 2.7.10: Let M(s) and N(s) be proper matrices of rational polynomials. Then

lims→∞ [M(s) +N(s)] = [lims→∞M(s)] + [lims→∞N(s)]. �

Proof Follows immediately from the sum rule of limits.

Lemma 2.7.11: Let M(s) and N(s) be proper matrices of rational polynomials. Then

lims→∞ [M(s)N(s)] = [lims→∞M(s)] · [lims→∞Ns)]. �

Proof We have, by the sum and product rule of limits,

lim
s→∞

[M(s)N(s)]ij = lim
s→∞

∑
k

[M(s)]ik [N(s)]kj

=
∑
k

lim
s→∞

[M(s)]ik [N(s)]kj

=
∑
k

[
lim
s→∞

M(s)
]
ik

[
lim
s→∞

N(s)
]
kj
.

Thus lims→∞ [M(s)N(s)] = [lims→∞M(s)] · [lims→∞Ns)].

This final result is well-known and is a variation on the matrix determinant lemma.

Lemma 2.7.12: Let G,H ∈ Rp×p. Then det(I +GH) = det(I +HG). �
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Proof We have that

LMR ,

 I 0

G I


I +HG H

0 I


 I 0

−G I


=

I H

0 I +GH

 , N.

Thus

det(LMR) = detL · detM · detR = I · det(I +HG) · I

= det(I +HG) = det(N) = det(I +GH),

as desired.
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Chapter 3

Representability and Abstractions of LTI Dynamic Networks

This chapter establishes the importance of abstractions and realizations of dynamic

networks in characterizing the structure and dynamics of systems. Abstractions and real-

izations generate dynamically equivalent representations of systems with varying degrees of

structural detail. In this chapter, we characterize four types of abstractions, which we call the

node abstraction, the edge abstraction, the immersion, and the stacked immersion. We give

conditions under which these abstractions are representable and well-posed. Furthermore,

we use the stacked immersion to show that dynamic networks exist that contain the same

level of detail as state space models, that other dynamic networks exist that contain the

same level of detail as transfer functions, and that still other dynamic networks exist that are

simultaneously abstractions of state space models and realizations of transfer functions; thus

containing intermediate levels of structural detail. We include examples illustrating these

points and show how we can apply them to the problem of network reconstruction.

3.1 Introduction

We can represent the dynamics of an LTI system in many ways, such as through a state

space model or a transfer function. For applications where knowledge of both the dynamic

behavior and the computational structure of the system are required, dynamic networks have

increasingly become the representation of choice [4–8]. We begin by introducing dynamic

networks as represented by the dynamical network function (DNF).

61



www.manaraa.com

3.1.1 Background: Dynamic Networks

Consider N manifest (or visible, or measured) real-valued signals w(t) = [w1(t), . . . , wN(t)]′,

where t ∈ R or t ∈ Z (in this work we will focus on t ∈ R, although all the results hold for

t ∈ Z as well). The behavior of any such system can be defined by a constraint f(w) = 0

for some operator, f , distinguishing allowed values of the manifest variables from disallowed

values. In general, there may be many such representations with the same solution set, or

behavior. If f is bijective, then we can say that the system is autonomous. However, if f

is not injective, then the manifest signals can be partitioned (possibly non-uniquely) into

inputs and outputs, where the outputs are uniquely specified for any choice of input signal.

This work considers linear finite-dimensional systems, where a partition can always be found

(possibly non-uniquely) for which the outputs are not only uniquely specified given arbitrary

inputs, but they are also causally determined from these inputs. Note that a specification of

which signals are inputs and which are outputs must be given as additional information–it

can not be derived in general from f–and this partition introduces a notion of causality on

the system.

In this work, we are concerned primarily with LTI systems. Thus, we can write the

behavior as f(w) = W̄w = 0, where W̄ is an N ×N matrix of SISO causal operators1. Let

p = rank W̄ and m = N − p. By partitioning w into m inputs2 u and p outputs y, we can

again rewrite this behavior, without loss of generality, as

(Ip×p −W ) −V

0 0


y
u

 =

0

0

 =⇒ y = Wy + V u. (3.1)

1For simplicity, we will assume that these operators are continuous-time systems in the frequency domain,
meaning that each operator is a rational function in the Laplace variable s ∈ C. Causality implies that
these rational functions are proper. The results in this work also generalize naturally to discrete-time and
time-domain operators as well.

2Some works (e.g., [1, 28]) further partition inputs based on whether they are controlled, uncontrolled,
deterministic, stochastic, etc. We make no such distinction in this work, although we do remind the reader
that these signals are all manifest, not fictitious (e.g., white noise) as part of a particular modeling framework.
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where W is a p× p matrix and V is a p×m matrix. We call the tuple (W,V ) the dynamical

network function (DNF) of this system. Matrix V defines the causal dependencies of each

output y on each input u, independent of all other manifest variables in the network. Matrix W

defines the causal dependencies of each output y on every other output y, again independent of

all manifest variables in the network. Thus, the DNF defines a network of causal dependencies

among manifest signals. This network can be rigorously characterized by a graph called the

signal structure, with nodes representing each manifest signal and directed edges labeled with

(possibly) dynamic operators characterizing the causal dependency of one signal on another.

See Section 3.2.1 for more details and also Figure 3.1 for examples of signal structures.

If W (and hence W̄ ) is hollow (meaning that all hollow entries are zero), then we call

the representation the dynamical structure function (DSF), and we typically use the notation

(Q,P ) in place of (W,V ) [1, 15]. We will discuss the distinction between DNFs and DSFs

further in Section 3.4.2.

By assuming that (I −W ) is well-posed (implying that W has a proper inverse [16])

and solving for y, we can re-arrange the DNF such that

y =
[
(I −W )−1V

]
u , Gclu, (3.2)

where Gcl is the closed-loop transfer function characterizing the input-output behavior of

this system.

3.1.2 Abstractions and Realizations of Dynamic Networks

An abstraction of some DNF (W,V ) is another dynamic network with equivalent input-output

behavior but with less structural detail. Similarly, a realization of (W,V ) is another dynamic

network, again with equivalent input-output behavior but with more structural detail. For

network reconstruction, this implies that an abstraction is cheaper to reconstruct than the

original DNF. Thus, abstractions provide two critical benefits which motivate this work:
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• The cost of reconstructing an abstraction (in terms of the amount of a priori structural

information required to identify the network uniquely) is strictly less than the cost of

reconstructing the original network (see Section 3.2.3).

• Abstractions represent a system at varying levels of detail. In studies of robustness

and vulnerability of a networked system (see, for instance, [6, 9, 11]), this allows us to

study both the vulnerability at an outsider’s level of information (by considering an

abstraction with less structural detail) or an insider’s level of detail (by considering a

realization with more structural detail).

In this work, we discuss four different types of abstractions, the node abstraction, the edge

abstraction (with the emphasis on a particular type of edge abstraction called the hollow

abstraction), the immersion, and the stacked immersion.

The node abstraction (Section 3.3) is found by reducing the number of manifest

variables in the network that still preserves the dynamics of the network and pattern of

independence among the remaining manifest variables. The edge abstraction (Section 3.4)

is found by removing specific edges in the network while still preserving dynamics and the

remaining Boolean structure. The hollow abstraction is a particular edge abstraction that is

found by removing all self-loops in the network, and results (as shown in Section 3.4.2) in a

DSF instead of a DNF.

If we compose the process for finding a node abstraction with that for finding an

edge abstraction, the result is an abstraction that we call the immersion or the immersed

network [34, 35]. The immersion (which has at times been simply called the abstraction)

has been previously explored in many ways. The term “immersion” was introduced in

[34] in reference to the output elimination procedure described in Section 3.3. The works

[34–36] leverage the reduced amount of identifiability conditions required for reconstructing

an immersion to identify specific links in the network as opposed to the network as a whole.

In [2, 30, 37–39], the DSF itself is described as simultaneously an immersion of a state space

model and a realization of a transfer function. This idea is formalized in [40], which discusses
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the identifiability of a state space model from a DSF and provides necessary and sufficient

conditions under which an immersion creates hidden states in the network that are shared

among the edges. The works [14, 15] and Chapter 2 of this dissertation give conditions on

when the immersion is proper and well-posed.

We construct the stacked immersion using the immersion as a foundation. A key

idea highlighted by this paper is that there exists a DSF, called the full-state DSF, that

is informationally equivalent to a state space model. Furthermore, there exists a stacked

immersion of the full-state DSF–called the final immersion–that is informationally equivalent

to the transfer function. There are also many stacked immersions of the full-state DSF and

realizations of the final immersion that represent intermediate levels of structural information.

Thus, we can describe the DSF (and the multi-DSF, which we introduce in Section 3.6) as a

“partial structure representation” of a system.

Remark 3.1.1: Throughout this work, we use the words “abstraction” and “immersion”

as a noun, referring to a specific DNF or DSF derived from a more structurally informative

network. Prior works often use the word “abstraction” (and “immersion”) as a verb

referring to the process converting a DNF into its abstraction. In this work, we will

maintain a distinction between the abstraction as a network and the process (or function

or method) used to compute the abstraction from the base network.

3.1.3 Related Work and Contributions

This chapter is a direct extension of [3] and a follow-on to [16]; however, it does contain the

following novel contributions in addition to those works:

• Generalization of previous results over DSFs into the realm of DNFs.

• Definition of the edge abstraction (Section 3.4).

• Separation of the immersion into the node abstraction and the hollow abstraction, with

a discussion on how these relate to DNFs and DSFs (Sections 3.3 and 3.4).
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• A definition and discussion of the “independence pattern” of a network, which is the

characteristic attribute defining the node abstraction.

• Proof that the process for computing the node abstraction is unique given the definition

of the node abstraction.

• Separation of the principles of representability and well-posedness, with the implication

that, assuming that some abstraction (node, hollow, or immersion) of a given base

network (DNF or DSF) is representable, the abstraction is well-posed if and only if the

base network is also well-posed (see Sections 3.3.4 and 3.4.4).

3.2 Background

Much of this work centers around functions of the form g(s) = n(s)
d(s)

, where n(s) and d(s) are

polynomials in s ∈ C. If the degree of n(s) is no greater than the degree of d(s), we say that

g(s) is proper. If the degree of n(s) is strictly less than the degree of d(s), then we say that

g(s) is strictly proper.

We are also concerned with matrices consisting of these rational functions. We say that

the matrix G(s) = [gij(s)] is proper if every rational function gij(s) is proper, and likewise

G(s) is strictly proper if every gij(s) is strictly proper. In the vein of [27], we define RPm×n as

the set of all m×n matrices of proper (and not necessarily strictly proper) rational functions.

Also, for notational simplicity, we will often drop the dependency of these matrices on s; i.e.,

we write G(s) simply as G.

We say that G ∈ RP p×p is invertible almost everywhere if it is singular only for a

finite choice of values s ∈ C. For brevity, from this point forward, when we say that G is

invertible, we mean that it is invertible almost everywhere.
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3.2.1 The Signal Structure Graph

Let (W,V ) be a DNF defining the relationship Y = WY +V U with W ∈ RP p×p, V ∈ RP p×m,

Y = [y1 · · · yp]′, and U = [u1 · · · um]′. Associated with this DSF is a weighted directed

graph Γ(W,V ) = (ΓV ,ΓE,ΓW ), where the vertices are defined by the set

ΓV = {y1, · · · , yp} ∪ {u1, · · · , um}, (3.3)

and the edges are defined by the set

ΓE = {(yi, yj) | i, j = 1, . . . , p} ∪ {(ui, yj) | i = 1, . . . ,m, j = 1, . . . , p}. (3.4)

Furthermore, ΓW assigns weights to the edges by defining the relation ΓW : ΓE → RP (note

that the edge weights are in RP rather than R as is common in graph theory) such that

ΓW (yi, yj) = Wji, ΓW (ui, yj) = Vji. (3.5)

In other words, the edges are defined by the Boolean structure of W and V and the weights

are defined by the entries (operators) in W and V .

We can also import existing graph-theoretic terms and concepts. Of greatest import

to this work is the notion of a walk, with net effect defined over a walk.

Definition 3.2.1: Walk

A walk from yi ∈ V (or ui ∈ V ) to yj ∈ V is a sequence of edges W = [(yi, yk1) ∈

E, . . . , (ykm , yj) ∈ E] such that the source of the first edge is yi and the sink of the last

edge is yj. In a walk, vertices and edges are both allowed to repeat in the sequence.
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Definition 3.2.2: Effect

Let W = [(yi, yk1) ∈ E, . . . , (ykm , yj) ∈ E] be some walk in the graph of (W,V ) from yi

to yj, and let J (W) = [(i, k1), . . . , (km, j)] index the nodes in this walk. Then we define

the effect of this walk to be

E(W) =
∏

î,ĵ∈J (W)

Wĵ ,̂i. (3.6)

In other words, the effect of some walk is the product of the weights of all edges in the

walk.

Since we can interpret edges as a subsystem represented by a SISO transfer function,

the effect of a walk is equivalent to the system resulting from connecting all of the subsystems

represented by the edges in the walk in sequence.

Definition 3.2.3: Net Effect

Let i, j index two nodes in our graph and let S̄ index some subset of the nodes in our

graph such that i 6∈ S̄ and j 6∈ S̄. We define the net effect from node i to node j with

respect to S̄ to be the sum of the effects of all of the walks connecting i to j and passing

through some subset of the nodes in S̄ only (including the empty set).

If S̄ is not specified, then the net effect is the sum of the effects of all walks in the

graph from i to j.

In the case where the net effect is convergent, we can show that the net effect is

from ui to yj is Gij = [(I −W )−1V ]ij. If the net effect is not convergent, we still define

it as Gij rather than the divergent sum of all walks [17].

We also define the independence pattern, which relates to the Boolean structure of the

DNF (W,V ).
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Definition 3.2.4: Independence Pattern

Edges in the signal structure are essential to the interpretation of the DNF. If there

exists a (non-zero) edge from yi to yj, this means that there is a component of signal yj

that is computed directly from yi and independent of all other manifest signals yk and ul

in the network (and likewise for an edge from ui to yj). Furthermore, since W and V

are matrices of proper rational polynomials, this computation is causal. However, if the

edge from yi to yj is zero, this means that either (i) there is no direct computation of yj

from yi independent from all other manifest signals, or (ii) that the direct computation

has been canceled exactly across the latent variables in the network. Thus, the graph of

the DSF represents the direct and causal dependence among variables manifest in the

network. We call these direct causal dependencies and independencies the independence

pattern of the network.

3.2.2 Well-Posedness of DNFs

As discussed in [16] and Chapter 2, a DNF model (W,V ) is considered to be well-posed if it

is a reasonable approximation of reality. Following the definitions in [21, 25], we say that a

DNF (as well as a DSF) defining the relationship Y = WY +V U is well-posed if the following

conditions are satisfied (see Definition 2.5.4):

(W1) Signals in Y exist and are unique given signals in U (i.e., the closed-loop transfer

function Gcl exists and is unique).

(W2) The dependence of Y on U is causal (i.e., Gcl is proper).

(W3) For each finite T and the truncation operator PT , the dependence of PTY on PTU is

Lipschitz continuous.

(W4) If (W1)-(W3) above hold for (W,V ), small perturbations to W and V do not cause

any of these conditions to fail.
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Chapter 2 and the works [14–16] then proceed to provide the necessary and sufficient conditions

for well-posedness, which are summarized as follows (see Theorem 2.5.8):

Proposition 3.2.5: Let (W (s), V (s)) be a proper DNF. Then the following statements are

equivalent:

• (W (s), V (s)) is well-posed.

• (I −W (s)) has a proper inverse.

• (I −W (∞)) , lims→∞(I −W (s)) is non-singular. ♦

3.2.3 Network Reconstruction

Let G ∈ RP p×m be a transfer function that is either given or identified from data. Network

reconstruction is the process of leveraging structural information (which will be defined below)

to find the unique DNF (W,V ) such that3 W ∈ RP p×p, V ∈ RP p×n, and G = (I −W )−1V .

As shown in [19, 41, 42], we can recover W and V by writing

G = (I −W )−1V =

[
W V

]G
Ip

 =⇒ G′ =

[
G′ Ip

]W ′

V ′

 =⇒ ~g = L~θ, (3.7)

where ~g ∈ RP pm is a vectorization of the pm known entries in G, ~θ ∈ RP p2+pm is a vectoriza-

tion of the p2 + pm unknown entries in

[
W V

]′
, and L ∈ RP pm×(p2+pm) is constructed to

preserve the transformation

[
G′ Ip

]
between the new vectorized spaces.

Note every entry in L and ~g is known, so the network reconstruction problem reduces

to finding a unique ~θ. However, since p2 + pm > pm, this problem is ill-posed. Hence, we

must reduce the dimensions of the columns such that the number of columns is less than or

3None of these matrices actually need to be strictly proper, and the network reconstruction methodology
presented below works even if the operators are improper or even functions over s that are not rational
polynomials. We will focus our discussion here, however, on the case where W and V are matrices of rational
polynomials.
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equal to pm. We can do so by leveraging a priori structural information about the DNF,

which may take the following form

• Knowledge that an entry in V or W is zero.

• Knowledge that an entry in V or W is a known linear combination of other unknown

entries in V or W .

If we know at least p2 entries in V and W according to the above criteria, then we can

recover V and W uniquely. We call the number p2 the identifiability index 4 required for the

reconstruction of (W,V ).

We can reduce the identifiability index required to reconstruct a network by finding

an abstraction of that network and reconstructing the abstraction instead. For instance, a

DSF is an abstraction of a DNF where the p diagonal entries of W are zero, which allows us

to remove p columns from L reducing the identifiability index from p2 to p2 − p (see Section

3.4.5). Moreover, since much of the network reconstruction literature centers on DSFs as

opposed to DNFs, p2 − p often appears as the necessary identifiability index required (see,

for instance, [19]).

3.3 Node Abstractions

Suppose that we wish to stop observing or modeling specific output signals in some network.

In other words, suppose we wish to reduce the set of variables that are manifest in the

system (by “abstracting away” the complementary set). Since we define links in the DNF

as the interaction between a source and destination manifest variable, independent from

other manifest variables (see Section 3.2.1), the DNF must change in order to reflect our new

4Some works, such as [19, 43], refer to this number as the informativity conditions. Other works, such
as [44, 45], refer to it as the identifiability conditions (or number of conditions for the identifiability of the
network). As we will note in Remark 4.3.6 (Chapter 4), the identifiability (informativity) conditions specify
the set of necessary and sufficient information required to reconstruct the network whereas the identifiability
index is a measure of the necessary minimum size of this set.
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manifest set without discarding the internal dynamics of the system. We call the result of

the transformation where we reduce the number of outputs Y measured a node abstraction.

3.3.1 Node Abstraction Definitions

We seek to provide a precise definition for a node abstraction. In short, a node abstraction

contains fewer nodes in the network, but is dynamically equivalent to the original network

and preserves the independence pattern. We define a node abstraction using the properties

“dynamically equivalent” and “independence-pattern-preserving” here.

Definition 3.3.1: Node Abstraction

Consider the DNF (W,V ) with W ∈ RP p×p and V ∈ RP p×m, and let this DNF char-

acterize the relationship Y = WY + V U for m inputs U and p outputs Y . Let YS be

some subset of the outputs of Y indexed by S. A node abstraction of (W,V ) with respect

to S is a new network (WS, VS) where WS is a matrix of (possibly improper) rational

polynomials of dimension |S| × |S|, where VS is a matrix of (possibly improper) rational

polynomials of dimension |S| ×m, and where the following properties hold:

• Dynamic Equivalence: The relationship YS = WSYS + VSU holds such that

YS
YS̄

 = (I −W )−1V U =⇒ YS = (I −WS)−1VSU. (3.8)

• Independence-Pattern Preserving: Let (ΓV ,ΓE,ΓW ) = Γ(Q,P ) be the graph

of this DNF as defined in Section 3.2.1 and consider the corresponding graph

(ΓVS ,ΓES
,ΓWS

) = Γ(WS, VS). For every pair yi, yj ∈ VS, we have that ΓWS
(yi, yj) is

precisely the net effect in Γ(W,V ) fromn yi to yj with respect to S̄a.

aDue to potential cycles in (W,V ), there may be an infinite number of walks between any two nodes
passing through subsets of S̄. As such, the “independence-pattern preserving” property can only be
defined on networks where net effects with respect to S̄ are convergent. Convergence is related to the
notion of stability; however, the computation of node abstractions need not be dependent on stability as
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the matrix inverses utilized to perform the computation (see Section 3.3.2) can exist even when the net
effects do not converge. As such, we define the “independence pattern preserving” property for the cases
where the requisite sums do indeed converge, but utilize the same node abstraction computation for the
non-convergent cases as well, requiring only that the network be representable (see Section 3.3.3).

In summary, dynamic equivalence implies that–where the closed loop transfer function

of the original network (W,V ) is Gcl = (I−W )−1V , and assuming that S indexes the first |S|

signals in Y –the closed loop transfer function of the abstracted network (WS, VS) is precisely

the first |S| rows in Gcl.

As defined in Section 3.2.1, the independence pattern of a DNF is the direct causal

dependence and independence among manifest variables. When converting a network to its

node abstraction, the independence pattern should be preserved, meaning that if signals in the

base network were directly dependent on each other and are still manifest in the abstraction,

then the direct dependence should remain in the abstraction (ignoring cancellation). However,

as some signals are no longer manifest, indirect dependencies through now-latent signals may

become direct dependencies in the abstracted network. For instance, suppose that, in the

base network (W,V ), yk is dependent on yj and yj is dependent on yi, but yk is independent

of yi (i.e., Wik = 0 but Wij 6= 0 and Wjk 6= 0). If we abstract away yj (meaning j 6∈ S),

independence-pattern preserving implies that (barring cancellation) the indirect dependence

of yk on yi through yj in (W,V ) becomes a direct dependence in (WS, VS) (i.e., [WS]ik 6= 0).

Thus we preserve the computational dependence and independence pattern across manifest

variables in the network.

3.3.2 Computing the Node Abstraction

We introduce a new function, A : RP p×p × RP p×m × S → RP |S|×|S| × RP |S|×m, and show

that this function maps to a node abstraction as defined by Definition 3.3.1. Furthermore,

we show that the resultant network is the unique network that satisfies Definition 3.3.1. Let

(W,V ) be a DNF defining the relationship Y = WY + V U , let S index some subset of the

signals Y with S̄ as the complement of S indexing the remaining signals, and define the node

abstraction of (W,V ) over S to be (WS, VS) = A(W,V | S). To find (WS, VS), reorder and
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partition Y = WY + V U such that

YS
YS̄

 =

WSS WSS̄

WS̄S WS̄S̄


YS
YS̄

+

VSS
VS̄S̄

U. (3.9)

Solving for YS̄, we get

YS̄ = (I −WS̄S̄)−1WS̄SYS + (I −WS̄S̄)−1VS̄U. (3.10)

Plugging this back into the first row of (3.9) gives the final DNF

YS =
[
WSS +WSS̄(I −WS̄S̄)−1WS̄S

]
YS +

[
VSS +WSS̄(I −WS̄S̄)−1VS̄S̄

]
U, (3.11)

, WSYS + VSU. (3.12)

We now wish to show that the function A computes the unique node abstraction as

defined by Definition 3.3.1.

Theorem 3.3.2: Let (W,V ) be a DNF defining the relationship Y = WY +V U , let S index

some subset of the signals Y with S̄ as the complement of S indexing the remaining signals.

Let A be a function such that (WS, VS) = A(W,V | S), where W and V are partitioned

according to S (possibly after reordering) as given in (3.9). such that

W =

WSS WSS̄

WS̄S WS̄S̄

 , P =

PSS
PS̄S̄

 . (3.13)

Finally, suppose net effect of walks with respect to S̄ is convergent5.

5This convergence property is required to demonstrate the independence-pattern preserving property and
uniqueness; it is not required to show dynamic equivalence. Furthermore, it is a sufficient condition and not
necessary.
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If (W,V ) is well-posed and (I −WS̄S̄) has an inverse6 and A(W,V | S) computes

(WS, VS) according to (3.12), then (WS, VS) = A(W,V | S) is a node abstraction. Furthermore,

(WS, VS) is the only DNF with respect to S that satisfies Definition 3.3.1. ♦

Proof We show that A is dynamically equivalent to the original network. Since (W,V ) is

well-posed, (I −W ) has a (proper) inverse by Theorem 2.5.8. Furthermore, we have assumed

that (I −WS̄S̄) is invertible. Thus, by block matrix inversion,

YS
YS̄

 =

I −WSS −WSS̄

−WS̄S I −WS̄S̄


−1 VSS

VS̄S̄

U =

N11 N12

N21 N22


VSS
VS̄S̄

U,
where

N11 =
[
I − (WSS +WSS̄(I −WS̄S̄)−1WS̄S)

]−1
= (I −WS)−1,

N12 = −N11WSS̄(I −WS̄S̄)−1 = (I −WS)−1WS̄S(I −WS̄S̄)−1.

Then

YS = [N11VSS +N12VS̄S̄]U =
[
(I −WS)−1VSS + (I −WS)−1VS̄S(I −WS̄S̄)−1VS̄S̄

]
U

= (I −WS)−1
[
VSS +WSS̄(I −WS̄S̄)−1VS̄S̄

]
U = (I −WS)−1VSU,

as desired.

Now, we show that A preserves the independence pattern. Consider the sub-graph

(ΓVS̄ ,ΓES̄
,ΓWS̄

) of (W,V ) indexed by S̄; i.e., the sub-graph consisting only of vertices in S̄ and

all edges in W connecting those vertices. Let yī, yj̄ ∈ ΓVS̄ be any pair of vertices in this sub-

graph (we allow yī = yj̄). Then [WS̄S̄]j̄ī is the net effect of the walk from yī to yj̄ containing

one edge passing through vertices indexed by S̄ only. Also
∑

k̄∈S̄ [WS̄S̄]j̄k̄ [WS̄S̄]k̄ī =
[
W 2
S̄S̄

]
j̄ī

is the net effect of all walks from yī to yj̄ containing exactly two edges passing through

6We defer the discussion of invertibility of (I −WS̄S̄) to Sections 3.3.3 and 3.3.4.
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vertices indexed by S̄ only. Similarly,
[
W k
S̄S̄

]
j̄ī

is the net effect of all walks from yī to

yj̄ containing exactly k edges passing through vertices indexed by S̄ only, meaning that[∑∞
k=0 W

k
S̄S̄

]
j̄ī

is the net effect of all walks from yī to yj̄ passing through vertices indexed by

S̄ only (including the walk containing 0 edges which is of net effect one when ī = j̄ and net

effect 0 otherwise). And by Lemma 3.8.3 and since the sum is convergent by assumption,

[
∑∞

k=0W
k
S̄S̄

]j̄ī = [(I −WS̄S̄)−1]j̄ī.

Now consider the full graph Γ(W,V ). Since, for any i, j ∈ S (where, again, we allow

i = j), [
WSS̄(I −WS̄S̄)−1WS̄S

]
ji

=
∑
j̄∈S̄

∑
ī∈S̄

[WSS̄]jj̄
[
(I −WS̄S̄)−1

]
j̄ī

[WS̄S ]̄ii , (3.14)

we have that [WSS̄(I −WS̄S̄)−1WS̄S]ji is the net effect of all walks from yi to yj passing only

through nodes indexed by S̄, and [WSS +WSS̄(I −WS̄S̄)−1WS̄S]ji is the net effect of walks

from yi to yj passing through nodes indexed by every subset of S̄ (including the empty set);

thus A is independence pattern preserving.

Finally, we show that (WS, VS) = A(W,V | S) is the unique DNF that is both a

dynamically equivalent reduction and an independence-pattern-preserving reduction. This

property follows immediately from the fact that independence-pattern-preserving reductions

specify precisely the values of WS and VS, thus (WS, VS) must be unique.

3.3.3 Representable Node Abstractions

For the purposes of this work, we desire all DNFs (W,V ) to consist of matrices of rational

polynomials so that they can be interpreted as reasonable approximations of networks of

causal systems. We wish for any abstraction (including node abstractions) to preserve this

property. Thus, we define representable abstractions as follows:
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Definition 3.3.3: Representable Abstractions

An abstraction (WS, VS) of some DNF (W,V ) (whether node, edge, or some other type)

is said to be a representable abstraction of (W,V ) if:

(R1) The abstracted network (WS, VS) exists, is unique, and is proper.

(R2) If (R1) holds for the abstraction of some network (W,V ), then small perturbations

to (W,V ) likewise results in a proper abstracted network.

Condition (R1) in Definition 3.3.3 parallels conditions (W1-W3) for the definition of

well-posedness of DNFS presented in [16], and condition (R2) parallels condition (W4) in this

same definition of well-posedness (see Section 3.2.2 of this work for conditions (W1-W4));

thus we refer the reader to that work for a full discussion and justification of these conditions.

In short, however, condition (W4)–and hence, (R2)–exists because we wish our DNF to

remain a reasonable approximation of reality even in the presence of modeling error.

As a result, representability and well-posedness are related concepts with subtle

differences. In short, well-posedness of some DNF (W,V ) is about the generic existence,

uniqueness, and properness of the closed-loop transfer function Gcl = (I − W )−1V . In

contrast, representability of the same DNF is about the generic existence, uniqueness, and

properness of the matrices W and V .

With this definition, we are prepared to give the necessary and sufficient conditions

for the representability of a node abstraction.

Theorem 3.3.4: Suppose (W,V ) is a proper DNF defining the relationship Y = WY + V U .

Let S index some subset of the signals Y with S̄ as the complement of S indexing the

remaining signals, and let (WS, VS) = A(W,V | S) be the node abstraction of (W,V ) with

respect to S, where W and V are partitioned according to S (possibly after reordering)

according to (3.9). Then (WS, VS) is a representable abstraction of (W,V ) (i) if and (ii) only

if (I −WS̄S̄) has a proper inverse. ♦
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Proof (i) Suppose that (I − WS̄S̄) has a proper inverse. Then, by Lemma 3.8.1 and

Lemma 3.8.2, WS = WSS +WSS̄(I −WS̄S̄)−1WS̄S and VS = VSS +WSS̄(I −WS̄S̄)−1VS̄S̄ are

both proper. Furthermore, due to the density of invertible matrices, small perturbations in

(W,V ) will not change this (see the proof for Proposition 4 in [16] for more details).

(ii) Suppose that (I −WS̄S̄) does not have a proper inverse. Then either (a) (WS, VS)

does not exist or is not unique, or (b) as was done in Proposition 4 in [16], we can always

design a perturbation on (W,V ) of arbitrary size such that one or both of WS and VS are

improper.

Corollary 3.3.5: Let (W,V ) be a proper DNF defining the relationship Y = WY + V U

and let SY index all of the signals in Y . Consider the set of all possible node abstractions

of some proper DNF (W,V ); i.e. the set A = {A(W,V | S) : S ⊆ SY } (note that A includes

(W,V )). Then every abstraction in A is representable (i) if and (ii) only if every principle

submatrix of (I −W ) has a proper inverse (or equivalently, if and only if every principle

submatrix of (I −W (∞)) is invertible). ♦

Proof (i) Suppose that every principle submatrix of (I−W ) has a proper inverse. Consider

an arbitrary S ⊆ SY , S 6= ∅. Then, with S̄ = SY − S, we have that (I −WS̄S̄) is a principle

submatrix of (I −W ), and, by assumption, has a proper inverse. Thus, by Theorem 3.3.4,

A(W,V | S) is representable. In the case where S = ∅, the properness (given by assumption)

of (W,V ) is equivalent to its representability.

(ii) Suppose that some principle submatrix of (I −W ) does not have a proper inverse.

Let this principle submatrix be (I −WS̄S̄) indexed by the set S̄. Then, by Theorem 3.3.4, we

have that A(W,V | S) is not representable, where S = SY − S̄.

3.3.4 Well-Posedness of Node Abstractions

We now wish to provide necessary and sufficient conditions for when abstractions and

realizations of DNF are well-posed. These conditions are contained in the following result:
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Theorem 3.3.6: Suppose (W,V ) is a proper DNF defining the relationship Y = WY + V U .

Let (WS, VS) = A(W,V | S) be a representable node abstraction of (W,V ) with respect to

some S indexing a subset of the output signals Y . Then (WS, VS) is well-posed (i) if and (ii)

only if (W,V ) is well-posed. ♦

Proof Permute and partition (I −W ) commensurate with S as given in (3.9). Now assume

that (WS, VS) is a representable abstraction of (W,V ). Then (I −WS̄S̄) has a proper inverse

by Theorem 3.3.4. Also notice that (I−WS) = (I−WSS)−WSS̄(I−WS̄S̄)−1WS̄S is precisely

(I −W )/(I −WS̄S̄) (i.e. (I −WS) is the Schur Complement of (I −WS̄S̄) in (I −W )).

(i) Assume that (W,V ) is well-posed. Then, by Theorem 2.5.8, (I −W ) has a proper

inverse. Thus, since both (I −W ) and (I −WS̄S̄) have proper inverses, (I −WS) also has a

proper inverse by Lemma 3.8.6; hence (WS, VS) is also well-posed by Theorem 2.5.8.

(ii) Assume that (WS, VS) is well-posed. Then, by Theorem 2.5.8, (I −WS) has a

proper inverse. Thus, since both (I −WS) and (I −WS̄S̄) have proper inverses, (I −W ) also

has a proper inverse by Lemma 3.8.6; hence (W,V ) is well-posed by Theorem 2.5.8.

Remark 3.3.7: The work [15] defines the concept strong well-posedness and gives the

necessary and sufficient conditions for an abstraction to be strongly well-posed. In the

language of this work, an abstraction is strongly well-posed if it is both representable

and well-posed, and the conditions given for strong well-posedness in Theorems 3 and

4 of that work are conditions of representability of the immersion, which is a hollow

abstraction (which we define in Section 3.4) of a node abstraction; thus those results

are consistent with Theorem 3.3.6 above. However, for clarity, this work separates the

notions of representability and well-posedness, as well as the notions of node abstractions

and hollow abstractions.

We now give a result pertaining the well-posedness of every abstraction of some DNF.
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Corollary 3.3.8: Suppose (W,V ) is a proper DNF defining the relationship Y = WY +V U .

Then (W,V ) and every abstraction of (W,V ) is representable and well-posed if and only if

every principle submatrix of (W,V ) has a proper inverse. ♦

Proof Follows immediately from Theorem 3.3.6 applied to Corollary 3.3.5.

Corollary 3.3.8 is important since the existence of proper inverses for every principle submatrix

of W is occasionally used as the conditions for well-posedness (see, for instance [46, 47];

see also the definition for total well-posedness in [15]). However, the insight we gain from

Theorem 3.3.4 and Theorem 3.3.6 is that these conditions are not conditions of well-posedness,

but conditions of representability. If we can guarantee the representability of every abstraction,

then we can guarantee the well-posedness of every abstraction as well.

3.3.5 Sequential Node Abstractions

Node abstractions are very similar to the notion of isospectral reductions presented in [48].

Consequentially, we can leverage an important result there to understand node abstractions

better. Specifically, when we sequentially apply abstractions to a DNF, the order in which

we abstract away outputs does not matter; all that matters is the set of outputs remaining at

the end. We begin with a definition:

Definition 3.3.9: Sequential Node Abstraction

Suppose that we wish to find a node abstraction of a given proper DNF (W,V ), and

then we wish to find a node abstraction of the resultant DNF, and so on. We call this

iterative abstraction process sequential abstraction, and for notational simplicity, we

define sequential node abstraction (WS, VS) such that

(WS, VS) = A(W,V | S1, S2, · · ·Sa) ,

A(A(A(W,V | S1) | S2) · · · | Sa),
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where, with SY indexing all of Y and for some integer a > 0, we have Sa ⊆ . . . ⊆ S2 ⊆

S1 ⊆ SY with Sa 6= ∅.
Equipped with this definition, we are now able to provide a lemma and then the main

result of this section, which closely follows Lemma 1.2 and Theorem 1.3 in [48], though with

some minor variations.

Lemma 3.3.10: Let (W,V ) be an arbitrary proper DNF defining the relationship Y =

WY + V U and with W ∈ RP p×p and V ∈ RP p×m. Let SY index all of Y and let S, T ⊆ SY

with S ∩ T = ∅ and suppose that A(W,V | S ∪ T ) and A(W,V | S) are representable. Then

A(W,V | S ∪ T, S) = A(W,V | S). (3.15)

♦

Proof Let N = SY − (S ∪ T ). Then we can permute and partition Q and P such that

W =


WSS WST WSN

WTS WTT WTN

WNS WNT WNN

 , V =


VSS

VTT

VNN

 . (3.16)

Then, by definition, we have that

A(W,V | S) = (WS, VS) (3.17)

with

WS = WSS +

[
WST WSN

]I −WTT −WTN

−WNT I −WNN


−1 WTS

WNS

 , (3.18)

VS = VSS +

[
WST WSN

]I −WTT −WTN

−WNT I −WNN


−1 VTT

VNN

 , (3.19)

which exist and are proper since we have assumed that A(W,V | S) is representable.
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Similarly, we have that

A(W,V | S ∪ T ) = (WT , VT ) (3.20)

with

WT =

WSS WST

WTS WTT

+

WSN

WTN

 (I −WNN)−1

[
WNS WNT

]
, (3.21)

VT =

VSS
VTT

+

WSN

WTN

 (I −WNN)−1VNN , (3.22)

which also exist and are proper since we have assumed that A(Q,P | S ∪ T ) is representable.

Defining

K = (I −WNN), (3.23)

L = (I −WTT )−
(
WTN(I −WNN)−1WNT

)
, (3.24)

we find that (noting K has an inverse since A(W,V | S∪T ) is representable and that L has an

inverse by Lemma 3.8.6 and since both A(W,V | S) and A(W,V | S ∪T ) are representable):

A(W,V | S ∪ T, S) = A(WST ,WST | S) = (WSTS, VSTS), (3.25)

where

WSTS = WSS +WSNK
−1WNS +

[
(WST +WSNK

−1WNT )L−1(WTS +WTNK
−1WNS)

]
,

(3.26)

VSTS = VSS +WSVK
−1VNN +

[
(WST +WSNK

−1QNT )L−1(VTT +WTNK
−1VNN)

]
. (3.27)
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Using block matrix inverses, we can compute the block matrix inverse in the equations for

QS and PS (noting that L as defined above is precisely the Schur Complement of (I −QNN)

in this matrix) as

I −WTT −WTN

−WNT I −WNN


−1

=

 L−1 L−1QTNK
−1

K−1WNTL
−1 K−1 +K−1QNTL

−1WTNK
−1

 . (3.28)

Plugging this back in to the equations for WS and WS, we find that WS = WSTS and

VS = VSTS, thus completing the proof.

Theorem 3.3.11 (Uniqueness of Sequential Node Abstractions): Let (W,V ) be an

arbitrary DNF defining the relationship Y = WY +V U and with W ∈ RP p×p and V ∈ RP p×m.

Let SY index all of Y and let, for some integer a > 0, Sa ⊆ . . . ⊆ S2 ⊆ S1 ⊆ SY with Sa 6= ∅.

Then (assuming that every abstraction in the sequence below is representable),

A(W,V | S1, S2, · · · , Sa) = A(W,V | Sa), (3.29)

that is, a sequential node abstraction is a node abstraction that is completely specified by

the final index set. ♦

Proof We show this by induction. If a = 2, then by Lemma 3.3.10, we have that

A(W,V | S1, S2) = A(W,V | S2). Now, for 2 ≤ k < a, suppose that A(W,V | S1, · · · , Sk) =

A(W,V | Sk). Then, by Lemma 3.3.10, we have that

A(W,V | S1, · · · , Sk, Sk+1) = A(W,V | Sk, Sk+1)

= A(W,V | Sk+1).

Thus, by induction, we have that A(W,V | S1, S2, · · · , Sa) = A(W,V | Sa), as desired.

To see the interpretation of Theorem 3.3.11, consider an arbitrary proper DNF (W,V )

defining the relationship Y = WY +V U . Suppose Y is indexed by SY and consider three sets
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S, T , and N such that S∩T = ∅ and N = SY −(S∪T ). Ultimately, we wish to abstract away

everything in T and N , leaving only the outputs indexed by S manifest. The implication of

Theorem 3.3.11 is that it does not matter the order in which we perform the node abstraction–

we could abstract away T and then N in sequence (represented by A(W,V | S ∪N,S)), we

could abstract away N and then T in sequence (represented by A(W,V | S ∪ T, S)), or we

could abstract away T and N together (represented by A(W,V | S))–and we would always

end with the same DNF (WS, VS).

3.3.6 Identifiability Index

Recall from Section (3.2.3) that the identifiability index to reconstruct some arbitrary DNF

(W,V ) (with W ∈ RP p×p and V ∈ RP p×n) is p2. Let (WS, VS) = A(W,V | S) be a node

abstraction of this DNF with |S| < p. We have that WS ∈ RP |S|×|S|, thus the identifiability

index to reconstruct the abstraction is |S|2 < p2, meaning the abstraction requires a lower

identifiability index than the base network.

3.4 Edge and Hollow Abstractions

We now introduce another type of abstraction, which we call the edge abstraction. In contrast

to the node abstraction, which removes nodes from the signal structure of some dynamic

network, the edge abstraction removes edges. We define the edge abstraction as follows:

Definition 3.4.1: Edge Abstraction

Let (W,V ) a DNF with W ∈ RP p×p and V ∈ RP p×m. Also let E be a set consisting

of some subset of edges in W and V . An edge abstraction with respect to E is another

DNF (WE, VE) where the following properties hold:

• Shape Preserving: We have WE ∈ RP p×p and VE ∈ RP p×m.
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• Edge Abstracting: For each [WE]ij, [VE]ij ∈ E, we have [WE]ij = 0 and [VE]ij = 0 .

• Edge Preserving: For each [WE]ij, [VE]ij 6∈ E, we have [WE]ij = 0 ⇐⇒ [W ]ij = 0

and [VE]ij = 0 ⇐⇒ [V ]ij = 0.

• Dynamic Equivalence: We have Gcl = (I −W )−1V = (I −WE)−1VE.

We write the function E mapping a DNF (W,V ) to its edge abstraction (WE, VE) over E

as (WE, VE) = E(W,V | E).

In other words, an edge abstraction is another DNF with the same shape and input-output

behavior and where some links have been forced to zero while the remaining Boolean structure

of the network is preserved.

While there may be many types of edge abstractions, we are primarily concerned with

one which we call the hollow abstraction, defined as follows:

Definition 3.4.2: Hollow Abstraction

A hollow abstraction is an edge abstraction according to Definition 3.4.1 where E =

{[W ]ii | i = 1, . . . , p}. We write (WH , VH) = H(W,V ) = E(W,V | E).

In other words, a hollow abstraction is an edge abstraction where we have forced all the

diagonal entries of W to be zero (i.e., we have forced WH to be hollow).

3.4.1 Computing the Hollow Abstraction

Let H be a function defining our hollow abstraction; i.e., let (WH , VH) = H(W,V ). To

define this function, suppose our DNF (W,V ) defines the relationship Y = WY + V U . Let

DW = diagW and subtract DWY from both sides of the equation. Rearranging, we get

Y = (I −DW )−1(W −DW )Y + (I −DW )−1V U (3.30)

, WEY + VEU. (3.31)
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Theorem 3.4.3: Suppose (W,V ) is a DNF with W ∈ RP p×p and V ∈ RP p×m. Let

(WE, VE) = H(W,V ), where (WH , VH) is found according to (3.31). Then (WH , VH) is a

hollow abstraction as defined in Definition 3.4.2. ♦

Proof Since W and DW are square, WH and VH will have the same shape as W and V

respectively, thus (3.31) is shape preserving. Also, since DW , diagW , W − DW is zero

along the diagonal and has the same zero structure as W on the off-diagonal. Furthermore,

(I −DW )−1 is a diagonal matrix; thus, [(I −DW )−1(W −DW )]ij = 0 ⇐⇒ [W −DW ]ij = 0

and (3.31) is both edge abstracting and edge preserving since E contains precisely the diagonal

elements of W . Also, we have

(I −WH)−1VH =
[
I − (I −DW )−1(W −DW )

]−1
(I −DW )−1V

=
[
(I −DW )−1 [(I −DW )− (W −DW )]

]−1
(I −DW )−1V

= (I −W )−1V,

thus (3.31) is dynamically equivalent to the original DNF. Since all four properties of an

edge abstraction hold, (3.31) is an edge abstraction according to Definition 3.4.1 and hence a

hollow abstraction according to Definition 3.4.2.

3.4.2 Importance of the Hollow Abstraction

As shown in the following result, the hollow abstraction is fundamental in relating the DNF

to the DSF. Indeed, we show that the DSF is precisely the hollow abstraction of some DNF.

Proposition 3.4.4: The DSF is a hollow abstraction of the DNF ♦

Proof From [1], we have that, given W̃ ∈ RP p×p and Ṽ ∈ RP p×m defined over a state

space model7, and given DW̃ , diag(W̃ ), the DSF is given by (Q,P ), where Q = (sI −

DW̃ )−1(W̃ −DW̃ ) and P = (sI −DW̃ )−1Ṽ . From [16], we have that, given the same W̃ and

7In [1], W̃ and Ṽ are labeled W and V respectively. In this work, we have added the tilde in order to
distinguish those matrices from the W and V defining the DNF.
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Ṽ as used in the computation of the DSF (e.g., obtained by starting with the same state

space model), the DNF is given by (W,V ), where W = 1
s
W̃ and V = 1

s
Ṽ .

We now show that (Q,P ) = (WH , VH) = H(W,V ), with H as defined above. Let

DW = diagW . Thus DW = 1
s

diag(W̃ ) = 1
s
DW̃ . Thus we have, from the definition of H

above that (WH , VH) are given as follows:

WH =

(
I − 1

s
DW̃

)−1(
1

s
W̃ − 1

s
DW̃

)
= (sI −DW̃ )−1(W̃ −DW̃ ) = Q,

VH =

(
I − 1

s
DW̃

)−1
1

s
Ṽ = (sI −DW̃ )−1Ṽ = P,

as desired. Thus the hollow abstraction of a DNF is a DSF.

3.4.3 Representability of the Hollow Abstraction

As with the node abstraction, we wish to characterize when an edge abstraction (and in

particular, the hollow abstraction) is representable. We continue to use Definition 3.3.3

to define representability; i.e., an edge abstraction or a hollow abstraction (WH , VH) is

representable if WH and VH are both matrices of proper rational polynomials. With this

definition, we are prepared to give conditions on the representability of the hollow abstraction,

which follows Theorem 3.3.4 closely in both statement and proof.

Theorem 3.4.5: Suppose (W,V ) is a DNF with W ∈ RP p×p and V ∈ RP p×m, and let

DW = diagW . Then (WH , VH) = H(W,V ) is representable (i) if and (ii) only if (I −DW )

has a proper inverse. ♦

Proof (i) Suppose that (I − DW ) has a proper inverse. Then, by Lemma 3.8.1 and

Lemma 3.8.2, WH = (I −DW )−1(W −DW ) and VH = (I −DW )−1V proper. Furthermore,

due to the density of invertible matrices, small perturbations in (W,V ) will not change this

(see the proof for Proposition 4 in [16] for more details).

(ii) Suppose that (I −DW ) does not have a proper inverse. Then either (a) (WH , VH)

does not exist or is not unique, or (b), as was done in Proposition 4 in [16], we can always
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design a perturbation of arbitrary size on (W,V ) such that one or both of WH and VH are

improper.

In Corollary 3.3.5, we showed that every possible node abstraction of the DNF (W,V )

is representable if and only if every principle submatrix of (I −W ) has a proper inverse.

We wish to provide a similar result over the hollow abstraction. We note that there is only

one possible hollow abstraction of any (W,V ), and as we show in the first result below,

having proper inverses for every principle submatrix of (I −W ) is a sufficient condition for

representability.

Corollary 3.4.6: Let (W,V ) be a DNF with W ∈ RP p×p and V ∈ RP p×m and suppose

that every principle submatrix of (I −W ) has a proper inverse. Then (WH , VH) = H(W,V )

is representable. ♦

Proof Suppose that every principle submatrix of (I −W ) has a proper inverse. Then, since

(1−Wii) is a principle submatrix for i = 1, . . . , p, (1−Wii) has a proper inverse. Equivalently

by Lemma 3.8.4, (1 − Wii(∞)) is invertible, meaning Wii(∞) 6= 1. Hence we have that

(I −DW (∞)) = diag(1−W11(∞), . . . , 1−Wpp(∞)) is invertible (since it is a diagonal matrix

with non-zero values on every diagonal entry). Thus (I − DW ) has a proper inverse by

Lemma 3.8.4, and by Theorem 3.4.5, (WH , VH) is representable.

3.4.4 Well-Posedness of the Hollow Abstraction

We also wish to provide conditions on the well-posedness of the hollow abstraction.

Theorem 3.4.7: Suppose (W,V ) is a proper DNF. Let (WH , VH) = H(W,V ) be a repre-

sentable hollow abstraction of (W,V ). Then (WH , VH) is well-posed (i) if and (ii) only if

(W,V ) is well-posed. ♦

Proof Let (WH , VH) be a representable hollow abstraction of (W,V ). Then, with DW =

diagW and by Theorem 3.4.5, we have that (I −DW ) has a proper inverse.
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(i) Suppose (W,V ) is well-posed. Then (I−W ) has a proper inverse by Theorem 2.5.8.

Thus we have

(I −WH)−1 = (I − (I −DW )−1(W −DW ))−1

=
[
(I −DW )−1(I −W )

]−1

= (I −W )−1(I −DW ), (3.32)

and since (I−W )−1 and (I−DW ) are both proper by assumption, by Lemma 3.8.2 (I−WH)−1

must also be proper. Thus, by Theorem 2.5.8, (WH , VH) is well-posed.

(ii) Suppose (WH , VH) is well-posed. Then (I −WH) has a proper inverse by Theo-

rem 2.5.8. Rearranging (3.32), we get that

(I −W )−1 = (I −WH)−1(I −DW )−1. (3.33)

And since (I −WH)−1 and (I −DW )−1 are both proper, by Lemma 3.8.2, (I −W )−1 is also

proper. Thus, by Theorem 2.5.8, (W,V ) is well-posed.

As shown in Section 3.4.2, the DSF is a hollow abstraction of the DNF. Thus, we have

that, assuming that the DSF is representable, it is well-posed if and only if the corresponding

DNF is also well-posed. This is a restatement and generalization of the results on the

well-posedness of abstractions contained in both [14, 15], where the additional conditions for

strong well-posedness contained in those works are precisely the conditions required to ensure

that the abstracted network is representable.

3.4.5 Identifiability Index

Recall from Section (3.2.3) that the identifiability index for the reconstruction of some DNF

(W,V ), W ∈ RP p×p and V ∈ RP p×m, is the number of columns in the matrix L that need to

be reduce in order to recover W and V uniquely. Since each column corresponds to a single
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entry in either W and V , and an edge abstraction forces some subset E of these entries to

zero, then the identifiability index are reduced by |E|. In particular, the identifiability index

to reconstruct (W,V ) is p2, thus the identifiability index to recover (WE, VE) = E(W,V | E)

is p2 − |E| < p2.

This is of particular interest for the hollow abstraction. We have that (Q,P ) =

H(W,V ) = E(W,V | E), where |E| = p contains the diagonal entries of W , is a DSF. Thus,

the identifiability index to recover a DSF (as first shown in [19]) is p2 − p < p2.

3.5 Immersions of Dynamical Structure Functions

We now turn our attention to DSFs (as opposed to DNFs) with the objective of defining

abstractions over DSFs. In particular, we will define an immersion (from [34, 35]) as the

analogy of the node abstraction over DSFs.

In general, if we find a node abstraction (as outlined in Section 3.3) of some DSF

(Q,P ), the abstracted network (WS, VS) will be a DNF instead of a DSF (meaning WS is not

hollow as required by the DSF). However, as shown in Section 3.4.2, if we find the hollow

abstraction (QS, PS) of (WS, VS), then (QS, PS) will be a DSF.

Definition 3.5.1: Immersion

Let (Q,P ) be some proper DSF characterizing the relationship Y = QY +PU , and let S

index some subset of the outputs Y . Let (WS, VS) = A(Q,P | S) be the node abstraction

of (Q,P ) with respect to S, and let (QS, PS) = H(WS, VS). Then we call (QS, PS) the

immersion of DSF (Q,P ) with respect to S. For simplicity, we define I = H◦A, meaning

that I(Q,P | S) = H(A(Q,P | S).

Since an immersion is found from the composition of a node abstraction process with

the hollow abstraction process, it inherits naturally the representability and well-posedness

results that we have presented previously. We summarize those here.
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Theorem 3.5.2: Let (Q,P ) be some proper DSF characterizing the relationship Y =

QY + PU , and let S index some subset of the outputs Y . Let (WS, VS) = A(Q,P | S) be

the node abstraction of (Q,P ) with respect to S, let (QS, PS) = H(WS, VS) = I(Q,P | S),

and suppose that both the node and the hollow abstractions are representable. Then the

immersion (QS, PS) is well-posed if and only if (Q,P ) is well-posed. ♦

Proof Follows immediately from Theorem 3.3.6 and Theorem 3.4.7.

Corollary 3.5.3: Let (W,V ) be a proper DNF defining the relationship Y = WY + V U

and let SY index all of the signals in Y . Consider the set of all possible node abstractions

of some proper DNF (W,V ); i.e., the set A = {A(W,V | S) : S ⊆ SY } (note that A

includes (W,V )). Let (QS, PS) = H(WS, VS) for (WS, VS) ∈ A be the hollow abstraction of

(WS, VS) (i.e., the immersion of (W,V ) with respect to S). Then every immersion (QS, PS) is

representable if every principle submatrix of (I −W ) has a proper inverse. ♦

Proof Suppose that every principle submatrix of (I −W ) has a proper inverse. Then, by

Corollary 3.3.5, every node abstraction (WS, VS) of (W,V ) is representable. Consider some

(WS, VS) = A(W,V | S) for some arbitrary S ⊆ SY and let (WT , VT ) = A(WS, VS | T ) for

some arbitrary T ⊆ S. By Theorem 3.3.11, (WT , VT ) = A(WS, VS | S, T ) = A(WS, VS | T ),

thus (WT , VT ) is also a node abstraction of (W,V ) and is therefore also representable.

Hence, since T was arbitrary, every node abstraction of (WS, VS) is representable and by

Corollary 3.3.5, every principle submatrix of (I − WS) has a proper inverse. Thus, by

Corollary 3.4.6, H(WS, VS) is also representable, and since S was arbitrary, every immersion

of (W,V ) is representable.

3.5.1 Sequential Immersions

We now wish to provide a result on sequential immersions akin to Theorem 3.3.11. Specifically,

when we sequentially apply immersions to a DSF, the order in which we abstract away outputs
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does not matter; all that matters is the set of outputs remaining at the end. We begin with a

definition:

Definition 3.5.4: Sequential Immersion

Suppose that we wish to find an immersion of a given proper DSF (Q,P ), and then

we wish to find an immersion of the resultant DSF, and so on. We call this iterative

abstraction process sequential immersion, and for notational simplicity, we define the

sequential immersed network (QS, PS) such that

(QS, PS) = I(Q,P | S1, S2, · · ·Sa) ,

I(· · · I(I(W,V | S1) | S2) | Sa),

where, with SY indexing all of Y and for some integer a > 0, we have Sa ⊆ . . . ⊆ S2 ⊆

S1 ⊆ SY with Sa 6= ∅.

With this definition, we have the following results:

Lemma 3.5.5: Let (Q,P ) be an arbitrary proper DNF defining the relationship Y =

WY + V U and with Q ∈ RP p×p hollow and P ∈ RP p×m. Let SY index all of Y and let

S, T ⊆ SY with S∩T = ∅ and suppose that I(Q,P | S∪T ) and I(Q,P | S) are representable.

Then

I(Q,P | S ∪ T, S) = I(Q,P | S). (3.34)

♦

Proof By definition of sequential immersion, our objective is to show that

H(A(H(A(Q,P | S ∪ T )) | S)) = H(A(Q,P | S)).

Define:

(WST , VST ) = A(Q,P | S ∪ T ),
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(WS, VS) = A(Q,P | S) = A(Q,P | S ∪ T, S), (Theorem 3.3.11)

(QS, PS) = H(WS, VS) = H(A((Q,P | S)) = I(Q,P | S).

Permute and partition WST and VST with respect to S to give

WST =

[WST ]SS [WST ]SS̄

[WST ]S̄S [WST ]S̄S̄

 and VST =

[VST ]SS

[VST ]S̄S̄

 .
This gives

WS = [WST ]SS + [WST ]SS̄ (I − [WST ]S̄S̄)−1 [WST ]S̄S,

VS = [VST ]SS + [WST ]SS̄ (I − [WST ]S̄S̄)−1 [VST ]S̄S̄.

We also have (QS, PS) = H(WS, VS), which gives, with DS = diagWS

QS = (I −DS)−1(WS −DS) and PS = (I −DS)−1VS.

Let DST = diagWST and DS = diagWS. We have that

(QST , PST ) , I(Q,P | S ∪ T ) = H(A(Q,P | S ∪ T ))

=
(
(I −DST )−1(WST −DST ), (I −DST )−1VST

)
.

Since DST and (I −DST )−1 are diagonal matrices, we permute and partition (QST , PST ) with

respect to S such that

QST =

(I − [DST ]SS)−1 ([WST ]SS − [DST ]SS) (I − [DST ]SS)−1 [WST ]SS̄

(I − [DST ]S̄S̄)−1 [WST ]S̄S (I − [DST ]S̄S̄)−1 ([WST ]S̄S̄ − [DST ]S̄S̄)

 ,
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PST =

(I − [DST ]SS)−1 [VST ]SS

(I − [DST ]S̄S̄)−1 [VST ]S̄S̄

 .
Note that, for W and D being square matrices of the same dimension, we have

(
I − (I −D)−1(W −D)

)−1
=
(
(I −D)−1((I −D)− (W −D)

)−1

= (I −W )−1(I −D). (3.35)

Thus, with (WSTS, VSTS) = A(QST , PST | S), we have

WSTS = (I − [DST ]SS)
−1

([WST ]SS − [DST ]SS) +

(I − [DST ]SS)
−1

[WST ]SS̄

(
I − (I − [DST ]S̄S̄)

−1
([WST ]S̄S̄ − [DST ]S̄S̄)

)−1

(I − [DST ]S̄S̄)
−1

[WST ]S̄S

= (I − [DST ]SS)
−1
(

[WST ]SS + [WST ]SS̄ (I − [WST ]S̄S̄)
−1

[WST ]S̄S − [DST ]SS

)
= (I − [DST ]SS)

−1
(WS − [DST ]SS) ,

VSTS = (I − [DST ]SS)
−1

([VST ]SS) +

(I − [DST ]SS)
−1

[WST ]SS̄

(
I − (I − [DST ]S̄S̄)

−1
([WST ]S̄S̄ − [DST ]S̄S̄)

)−1

(I − [DST ]S̄S̄)
−1

[VST ]S̄S̄

= (I − [DST ]SS)
−1
(

[VST ]SS + [WST ]SS̄ (I − [WST ]S̄S̄)
−1

[VST ]S̄S̄

)
= (I − [DST ]SS)

−1
VS .

All that is left to show now is that (QH , PH) , H(WSTS, VSTS) = (QS, PS). Define

DSTS = diagWSTS. Observe that, since [DST ]SS and (I − [DST ]SS)−1 are both diagonal

matrices, we have that

WSTS = (I − [DST ]SS)−1WS − (I − [DST ]SS)−1 [DST ]SS =⇒

DSTS = (I − [DST ]SS)−1 (DS − [DST ]SS),

where DS = diagWS. Also, from (3.35), we have that

(I −DSTS)−1 = (I −DS)−1(I − [DST ]SS).
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We have

QH = (I −DSTS)−1(WSTS −DSTS)

= (I −DS)−1(I − [DST ]SS)
(

(I − [DST ]SS)
−1

(WS − [DST ]SS)− (I − [DST ]SS)
−1

(DS − [DST ]SS)
)

= (I −DS)−1(WS −DS)

= QS ,

PH = (I −DSTS)−1VSTS

= (I −DS)−1(I − [DST ]SS) (I − [DST ]SS)
−1

VS

= (I −DS)−1VS

= PS ,

as desired, thus completing our proof.

Theorem 3.5.6: Let (Q,P ) be an arbitrary DNF defining the relationship Y = QY + PU

and with Q ∈ RP p×p hollow and P ∈ RP p×m. Let SY index all of Y and let, for some integer

a > 0, Sa ⊆ . . . ⊆ S2 ⊆ S1 ⊆ SY with Sa 6= ∅. Then (assuming that every abstraction in the

sequence below is representable),

I(Q,P | S1, S2, · · · , Sa) = I(Q,P | Sa), (3.36)

that is, a sequential immersion is an immersion that is completely specified by the final index

set. ♦

Proof We show this by induction. If a = 2, then by Lemma 3.5.5, we have that

I(Q,P | S1, S2) = I(Q,P | S2). Now, for 2 ≤ k < a, suppose that I(Q,P | S1, · · · , Sk) =

I(Q,P | Sk). Then, by Lemma 3.5.5, we have that

I(Q,P | S1, · · · , Sk, Sk+1) = I(Q,P | Sk, Sk+1)

= I(Q,P | Sk+1).
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Thus, by induction, we have that I(Q,P | S1, S2, · · · , Sa) = I(Q,P | Sa), as desired.

The interpretation of Theorem 3.5.6 is the same as that of Theorem 3.3.11 discussed

at the end of Section 3.3.5.

3.5.2 Identifiability Index

Recall from Section (3.4.5) that the identifiability index to reconstruct some arbitrary DSF

(Q,P ) (with Q ∈ RP p×p and P ∈ RP p×n) is p2 − p. Let (QS, PS) = H(A(W,V | S)) be

the immersed network of this DNF with |S| < p. We have that QS ∈ RP |S|×|S|, thus the

identifiability index to reconstruct the immersion is |S|2−|S| < p2−p, meaning the immersion

requires a lower identifiability index than the base network.

3.6 Stacked Immersions

We now wish to define a different type of abstraction, which we will call a stacked immersion,

which reduces structural information of a DSF without reducing the number of outputs

modeled. We define this abstraction over DSFs as such a definition allows us to construct

a spectrum of models from state space models to the transfer function. We can also define

stacked abstractions over DNFs; however, such a representation is not useful for this work.

Definition 3.6.1: The Stacked Immersion

Consider a DSF characterized by Y = QY + PU , and a partition of Y such that

(possibly after re-ordering) Y =

[
Y ′S1

· · · Y ′Sa

]′
with corresponding set of index sets

T = {S1, . . . , Sa}. A stacked immersion of (Q,P ) is the pair (QT , PT ) such that

QT =


Q1 · · · 0

...
. . .

...

0 · · · Qa

 , PT =


P1

...

Pa

 , (3.37)

96



www.manaraa.com

where (Qi, Pi) = I(Q | Si) (i.e., (Qi, Pi) is the immersion of (Q,P ) over Si).

We write the stacked immersion of (Q,P ) with respect to the partition T as (QT , PT ) =

F(Q,P | T ).

Note that if Y = QY + PU , by Theorem 3.3.2 and Theorem 3.4.3, we also have that

Y = QTY +PTU , meaning that any stacked immersion of some DSF is dynamically equivalent

to that DSF. Furthermore, we will have that QS is hollow since each Qi is hollow. A stacked

immersion of (Q,P ) is thus a stacking of regular immersions across a full partitioning of

the outputs so that we can come up with an alternate (QT , PT ) that preserves the same

input-output mapping.

It is very important to note that the stacked immersion (QT , PT ) is syntactically

equivalent to a DSF (Q,P ) where Q = QT and P = PT . However, semantically, they are

very different. As discussed in Section 3.3, immersions preserve the independence pattern

represented in a system; therefore, in (QT , PT ), the independence pattern is preserved within

each diagonal block but hidden between blocks. In other words, for a DSF (and barring

cancellations), a zero in an off-diagonal of Q entry means that the sum of all walks between

the corresponding outputs must be zero, whereas, in the stacked immersion, this constraint

need not hold.

In short, the stacked immersion (QT , PT ) is not a DSF (or even a DNF) since the

zeros in the off-diagonal blocks do not represent independence between manifest variables.

Hence, we call (QT , PT ) a multi-DSF. It should also be noted that if Y is not partitioned,

meaning that T = {{1, . . . , p}}, then F(Q,P | T ) = (Q,P ), meaning any DSF is a stacked

immersion of itself, and therefore is a multi-DSF. Thus the set of DSFs is a subset of the set

of multi-DSFs.

3.6.1 A Spectrum of Models

We now use the results of the previous sections to demonstrate the capability of multi-DSFs

to represent LTI systems with any desired level of structural information. To accomplish
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this, we will show that, for any arbitrary state space model, there exists a DSF, called the

full-state DSF, that is informationally equivalent to that model. We also show that this same

DSF has a stacked immersion in one-to-one correspondence with the transfer function of that

state space model. We begin with a definition.

Definition 3.6.2: Full-State DSF

Suppose that we have a state space model (A,B,C,D), where C = I (i.e., we measure

every state). With A , [aij] ∈ Rp×p and B , [bij] ∈ Rn×m, and following the procedure

contained in [1], we derive the DSF (Q,P ) of this model as

Q =



0 a12

s−a11
· · · a1p

s−a11

a21

s−a22
0 · · · a2p

s−a22

...
...

. . .
...

ap1

s−app
ap2

s−app · · · 0


, (3.38)

P =



b11

s−a11

b12

s−a11
· · · b1m

s−a11

b21

s−a22

b22

s−a11
· · · b2p

s−a22

...
...

. . .
...

bp1

s−app
bp2

s−app · · ·
bpm
s−a11


+ (I −Q)D. (3.39)

We call (Q,P ) in equations (3.38) and (3.39) the full-state DSF.

Theorem 3.6.3: Let (A,B,C,D) with C = I, and let (Q,P ) be the (full state) DSF

corresponding to this state space model. Then (Q,P ) is the unique immersion of (A,B,C,D)

and (A,B,C,D) is the unique minimal realization of (Q,P ). ♦

Proof First, (Q,P ) can be recovered uniquely from (A,B,C,D) regardless of the choice of

C (see [1]). To recover (A,B,C,D) from (Q,P ), first note that every entry in Q is a strictly

proper transfer function with a constant in the numerator and one pole in the denominator.

The pole is consistent in each row, and is the value for the diagonal entry of that row. The
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numerator on the off-diagonals is the value of the off-diagonals in A, and so we can recover A

uniquely from Q.

Since Q is strictly proper, (I − Q) will have a proper inverse [14, 15]. Let P =

P̃ + (I −Q)D. Then (I −Q)−1P = (I −Q)−1P̃ +D. Since P̃ is strictly proper from (3.39),

we have that (I −Q)−1P̃ will be strictly proper. Furthermore, since it is strictly proper, we

have that lims→∞(I −Q)−1P̃ = 0. Thus lims→∞(I −Q)−1P = D and we have recovered D

uniquely. Subtract (I −Q)D, which is known, from P to get P̃ . The numerators of P̃ specify

B uniquely.

Finally, no state space realization of a smaller order can generate (Q,P ) of the given

dimensions; thus the (A,B,C,D) found must be minimal.

Thus, by Theorem 3.6.3, a full-state DSF is informationally equivalent to a (minimal) state

space representation.

We now look at the other end of the spectrum, the transfer function. Again, we begin

with a definition.

Definition 3.6.4: Final Immersion

A final immersion of a proper DSF (Q,P ) is the stacked immersion FT = F(Q,P | T )

where T = {{1}, . . . {p}}.

Theorem 3.6.5: Let (Q,P ) be a proper DSF with transfer function Gcl = (I −Q)−1P , and

suppose that T = {{1}, . . . {p}}. Then the final immersion F(Q,P | T ) = (0, Gcl). ♦

Proof By Theorem 3.3.2 and Theorem 3.4.3, we have that (QF , PF ) = F(Q,P | {{1}, . . . {p}})

is given by

QF =


0 · · · 0

...
. . .

...

0 · · · 0

 = 0, PF =


G1

...

Gp

 = Gcl, (3.40)

where Gi is the i’th row of Gcl.
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Theorem 3.6.5 shows us that the final immersion is in one-to-one correspondence with

the transfer function of the full-state DSF. Furthermore, the transfer function of the full-state

DSF is also the same as the transfer function of its corresponding state-space realization.

Thus Theorem 3.6.3 and Theorem 3.6.5 shows us that there exists a multi-DSF

containing as much structural information as the state space, and a multi-DSF containing as

little as the transfer function. By choosing other partitions of the outputs Y and taking a

stacked immersion with that partition, we can create other multi-DSFs containing intermediate

levels of information. As a result, the multi-DSF is a general model of LTI systems, capable

of representing many levels of structural knowledge, many more than state space models or

transfer functions alone are capable of doing. These different immersions form a spectrum of

models of LTI systems containing various levels of structural information.

3.6.2 Identifiability Index

The identifiability index to reconstruct a stacked immersion of the form (3.37) is equal to

the sum of the identifiability indices to reconstruct each individual (Qi, Pi) for i = 1, . . . , n.

Let Qi ∈ RP pi×pi , with
∑a

i=1 pi = p > 0. Then the identifiability index to reconstruct the

stacked immersion is
a∑
i=1

(p2
i − pi) =

(
a∑
i=1

p2
i

)
− p ≤ p2 − p, (3.41)

with equality only when a = 1. Thus, if the stacked immersion is not equal to the original

DSF, the stacked immersion has a strictly smaller identifiability index required to reconstruct

it from data than the original DSF.

3.7 Numeric Examples

We now provide three numeric examples illustrating some of the points of this paper.

100



www.manaraa.com

Y1 Y2 Y3

Y4

1
s

s+1
s+2

1
s+2

1
s−1

1
s+3

Y1 Y2 Y3

1
s

s+1
s+2

1
(s−1)(s+2)

1
(s−1)(s+3)

Y1 Y2 Y3

(s−1)(s+2)
s(s2+s−3)

(s−1)(s+1)
s2+s−3

1
(s−1)(s+3)

Figure 3.1 Example signal structures of a network, its node abstraction, and its immersion as
computed in Section 3.7.1. Note that we are only drawing the sub-graph of the signal structure
containing the nodes in Y but hiding the nodes in U . (Top-Left) the signal structure of the
starting DSF (Q,P ). (Top-Right) the signal structure of the DNF (WS, VS) in (3.43a) found
by performing a node abstraction that removes node Y4 from (Q,P ). (Bottom-Middle) the
signal structure of the immersed DSF (QS, PS) in found by performing a hollow abstraction
on (WS, VS).

3.7.1 Immersions

We demonstrate the computation of an immersion and show that the independence pattern

is preserved as required in Definition 3.3.1. Consider a DSF Y = QY + PU given by



Y1

Y2

Y3

Y4


=



0 0 0 1
s+3

1
s

0 s+1
s+2

1
s+2

0 0 0 0

0 1
s−1

0 0





Y1

Y2

Y3

Y4


+ I4



U1

U2

U3

U4


. (3.42)

See the top left of Figure 3.1 for the signal structure Γ(Q).

We wish to abstract away Y4 and then perform a hollow abstraction on the resulting

DNF to get another DSF. In other words, we wish to find (WS, VS) = A(Q,P | S) for

S = {1, 2, 3} and then (QS, PS) = H(WS, VS). Note also that S̄ = {4} defines the nodes we

are abstracting away. To find this abstraction, we first partition Q and P as described in
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(3.9). This gives

QSS =


0 0 0

1
s

0 s+1
s+2

0 0 0

 , QSS̄ =


1
s+3

1
s+2

0

 ,
QS̄S =

[
0 1

s−1
0

]
, QS̄S̄ =

[
0

]
,

PSS =


1 0 0 0

0 1 0 0

0 0 1 0

 , PS̄S̄ =

[
0 0 0 1

]
.

Thus, we can compute WS = QSS +QSS̄(I−QS̄S̄)−1QS̄S and VS = PSS +QSS̄(I−QS̄S̄)−1PS̄S̄

as

WS =


0 1

(s−1)(s+3)
0

1
s

1
(s−1)(s+2)

s+1
s+2

0 0 0

 , , VS =


1 0 0 1

s+3

0 1 0 s−1
s+2

0 0 1 0

 . (3.43a)

See the top right of Figure 3.1 for the signal structure Γ(WS). Note the similarity of the

signal structure of WS to the signal structure of Q. There is a new edge from Y2 to Y1 in

Γ(WS) corresponding to the walk Y2 → Y4 → Y1 in Γ(QS). Similarly, there is a new edge (a

self loop) from Y2 to itself corresponding to the walk Y2 → Y4 → Y2. Thus all walks starting

and ending at nodes in S = {1, 2, 3} but passing only through S̄ = {4} in Γ(Q) are now

manifest in Γ(WS) as direct edges between the endpoint manifest variables in S.

To return to an immersed DSF, we must remove all self-loops in Γ(WS) and re-

normalize the edges entering the node with the removed self-loop to preserve the dynamics

removed. To see the benefit of this re-normalization, zero out every link in the middle graph

of Figure 3.1 except Y1 → Y2 and the self-loop Y2 → Y2. If we were to compute the closed-loop

transfer function from Y1 to Y2, we would start with the equation Y2 = W22Y2 +W21Y1, thus

Y2 = (1−W22)−1W21Y1 and the closed-loop transfer function is (1−W22)−1W21 = (s−1)(s+2)
s(s2+s−3)

.
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Note from the figure on the right of Figure 3.1 that this is precisely the weight on the link

Y1 → Y2, thus the hollowness of QA preserves the meaning that if all but one link is zeroed

out in a network, the remaining link represents the closed-loop transfer function from tail to

tip.

To perform this re-normalization (i.e., to perform the edge abstraction), let

DW = diag(WS) = diag

(
0,

1

(s− 1)(s+ 2)
, 0

)
. (3.44)

We then compute QS = (I −DW )−1(WS −DW ) and PS = (I −DW )−1VS. This gives

QS =


0 1

(s−1)(s+3)
0

(s−1)(s+2)
s(s2+s−3)

0 (s−1)(s+1)
s2+s−3

0 0 0

 , PS =


1 0 0 1

s+3

0 (s−1)(s+2)
s2+s−3

0 s−1
s2+s−3

0 0 1 0

 . (3.45a)

The signal structure Γ(QS) is given on the bottom middle of Figure 3.1. Note that, with the

exception of the self-loop, all edges that exist in Γ(WS) likewise exist in Γ(QS).

3.7.2 The DSF Versus the Multi-DSF

As mentioned in Section 3.6, a multi-DSF formed from stacked immersion is semantically

different than a DSF that looks identical. We illustrate this difference using the necessary

identifiability index from network reconstruction. Suppose that we have a DSF Y = QY +PU ,

where YA
YB

 =

QA 0

0 QB


YA
YB

+

PA
PB

U, (3.46)

with QA, PA ∈ RP 3×3 and QB, PB ∈ RP 2×2. If (Q,P ) were a standard DSF, then the

identifiability index necessary to recover this DSF from data (see Section 3.2.3) is p2 − p =

(3 + 2)2 − (3 + 2) = 20.

103



www.manaraa.com

Figure 3.2 The spectrum of models corresponding to the example in Section 3.7.3. We label
each node in the graph with the partition T defining the stacked immersion, so the right side
of the graph corresponds to the state space model and the full-state DSF and the left side
corresponds to the transfer function and the final immersion. The identifiability index, as
well as structural information, increase as the graph moves from left to right.

However, if (Q,P ) were a stacked immersion constructed from some realization

(QR, PR), with (QA, PA) = A(QR, PR | A) and (QB, PB) = A(QR, PR | B), then the iden-

tifiability index is equal to the sum of the individual identifiability indices of each DSF

(QA, PA) and (QB, PB) (since we would reconstruct each immersion individually and then

stack them together to form the stacked immersion). Thus the identifiability index is

(3)2 − 3 + (2)2 − 2 = 8 6= 20. Furthermore, we see that the cost of recovering the multi-DSF

is less than the DSF itself.

It can be shown that the identifiability index of the final immersion is zero, and the

identifiability index of the full-state DSF is n2−n, where n is the number of states. All other

stacked immersions have a corresponding identifiability index that is strictly between 0 and

n2 − n; thus the identifiability index imposes a partial ordering among stacked immersions

corresponding to the amount of structural information encoded by each stacked immersion.

More on this in Section 3.7.3.
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3.7.3 Stacked Immersions and a Spectrum of Models

Consider the following state space model:


ẋ1

ẋ2

ẋ3

 =


1 2 3

4 5 6

7 8 9



x1

x2

x3

+


1 0 0

0 1 0

0 0 1

u,

y =


1 0 0

0 1 0

0 0 1

x.

By the process in [1] and Theorem 3.6.3, the corresponding (full-state) DSF is Y = QY +PU

with

Q =


0 2

s−1
3
s−1

4
s−5

0 6
s−5

7
s−9

8
s−9

0

 , P =


1
s−1

0 0

0 1
s−5

0

0 0 1
s−9

 .
To reconstruct this DSF (or the corresponding state space model), the identifiability index

required is p2 − p = 32 − 3 = 6.

The outputs are enumerated by the set {1, 2, 3}. This set has 5 partitions, namely

({1, 2, 3}), ({1, 2}, {3}), ({1, 3}, {2}), ({2, 3}, {1}), and ({1}, {2}, {3}), which are the nodes

shown in Figure 3.2. When the partition is ({1, 2, 3}), we have that the stacked immersion is

equal to itself (i.e., (Q,P ) = F(Q,P | ({1, 2, 3}))).

Now consider the partition ({1, 2}, {3}). To find the corresponding stacked immer-

sion (QA, PA), we first compute the immersions (Q{1,2}, P{1,2}) = A(Q,P | {1, 2}) and

(Q{3}, P{3}) = A(Q,P | {3}). This yields

Q{1,2} =

 0 2(s+3)
d1

2(2s+3)
d2

0

 , P{1,2} =

 s−9
d1

0 3
d1

0 s−9
d+2

6
d2

 ,
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where d1 = s2 − 10s− 12 and d2 = s2 − 14s− 3. Furthermore, we have that

Q{3} =

[
0

]
, P{3} =

[
7s−3
d3

8s+6
d3

s2−6s−3
d3

]
,

where d3 = s(s2 − 15s− 18). Thus, the stacked immersion (QA, PA) = F(Q,P | ({1, 2}, {3}))
is given by

QA =


0 2(s+3)

d1
0

2(2s+3)
d2

0 0

0 0 0

 , PA =


s−9
d1

0 3
d1

0 s−9
d+2

6
d2

7s−3
d3

8s+6
d3

s2−6s−3
d3

 .

The identifiability index necessary to reconstruct this multi-DSF is the sum of the identifia-

bility indices to reconstruct (Q{1,2}, P{1,2}) and (Q{3}, P{3}), which is (2)2−2 + 12−1 = 2. We

compute the stacked immersions for partitions ({1, 3}, {2}) and ({2, 3}, {1}) are computed in

a similar manner and find that these have the same identifiability index.

Finally, consider the partition ({1}, {2}, {3}). To find the corresponding stacked immer-

sion (QF , PF ), we first compute the immersions (Q{1}, P{1}) = A(Q,P | {1}), (Q{2}, P{2}) =

A(Q,P | {2}), and (Q{3}, P{3}) = A(Q,P | {3}). We already computed the last of these

above. We also have that

Q{1} =

[
0

]
, P{1} =

[
s2−14s−3

d3

2s+6
d3

3s−1
d3

]
,

and

Q{2} =

[
0

]
, P{2} =

[
4s+6
d3

s2−10s−12
d3

6s+6
d3

]
.

Thus the final immersion (QF , PF ) = F(Q,P | ({1}, {2}, {3})) is given by

QF = 0, PF =


s2−14s−3

d3

2s+6
d3

3s−1
d3

4s+6
d3

s2−10s−12
d3

6s+6
d3

7s−3
d3

8s+6
d3

s2−6s−3
d3

 .
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We can verify that PF = (I −Q)−1P = C(sI − A)−1B , G, thus (QF , PF ) is equivalent to

the closed-loop transfer function of this system. The identifiability index to reconstruct this

multi-DSF is the sum of the identifiability index to reconstruct (Q{1}, P{1}), (Q{2}, P{2}), and

(Q{3}, P{3}), which is (1)2 − 1 + (1)2 − 1 + (1)2 − 1 = 0. This is sensible since the transfer

function can be recovered from data uniquely without requiring any additional structural

information.

With these computations, we can build a spectrum of models–as described in Section

3.6.1–from least structurally informative (requiring a lower identifiability index) to most

structurally informative (requiring the largest identifiability index). This spectrum is shown

in Figure 3.2.

3.8 Appendix

We list several known results on matrices of rational polynomials that we use throughout

this work.

Lemma 3.8.1: Let M(s) and N(s) be proper matrices of rational polynomials, each of

dimension m×n. Then M(s) +N(s) is likewise proper. Furthermore, if both M(s) and N(s)

are strictly proper, the sum is also strictly proper. �

Proof See Lemma 2.7.3 in Chapter 2.

Lemma 3.8.2: Let M(s) be a matrix of rational polynomials of dimension p×m, and let

N(s) be a matrix of rational polynomials of dimension m× n. If M(s) and N(s) are both

proper, then M(s)N(s) is proper. Likewise, if one of M(s) and N(s) are strictly proper, then

the product is also strictly proper. �

Proof See Lemma 2.7.4 in Chapter 2.

Lemma 3.8.3: Let Q ∈ RP p×p. Suppose that (I − Q) has an inverse and that
∑∞

k=0Q
k

converges. Then (I −Q)−1 =
∑∞

k=0Q
k. �
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Proof We must show that (I −Q) is both a left and a right inverse of
∑∞

k=0Q
k. To show

that it is a left inverse, we have (since
∑∞

k=0 Q
k converges):

(I −Q)
∞∑
k=0

Qk =
∞∑
k=0

Qk −Q
∞∑
k=0

Qk =
∞∑
k=0

Qk −
∞∑
k=1

Qk

=

(
Q0 +

∞∑
k=1

Qk

)
−
∞∑
k=1

Qk = Q0 = I.

To show that (I −Q) is a right inverse, we have that (again since
∑∞

k=0Q
k converges):

I = (I −Q)
∞∑
k=0

Qk =
∞∑
k=0

Qk −Q
∞∑
k=0

Qk

=
∞∑
k=0

Qk −
(
∞∑
k=0

Qk

)
Q =

∞∑
k=0

Qk(I −Q).

Thus, since (I −Q) is invertible, it is both a left and right inverse of
∑∞

k=0Q
k.

Lemma 3.8.4: Let G(s) be a square and proper matrix of rational polynomials. Then the

inverse of G(s) exists and is proper (a) if and (b) only if G(∞) , lims→∞G(s) is non-

singular. �

Proof See Lemma 2.7.7 in Chapter 2.

The remaining results deal with Schur Complements and their inverses. We extend the

known results, given in Lemma 3.8.5, to the realm of matrices of proper rational polynomials.

Lemma 3.8.5 (Schur): Let

M =

A B

C D


be any arbitrary square matrix. If any two of the following matrices are invertible, then the

third is as well: (i) M , (ii) D, and (iii) M/D (where M/D = A − BD−1C is the Schur

Complement of D in M). �
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Lemma 3.8.6: Let M(s) be a square matrix of proper rational polynomials such that

M(s) =

A(s) B(s)

C(s) D(s)

 (3.47)

Then, if any of the following two are true, the third is also true: (i) M(s) has a proper

inverse, (ii) D(s) has a proper inverse, and (iii) M(s)/D(s) has a proper inverse (where

M(s)/D(s) = A(s)−B(s)D−1(s)C(s) is the Schur Complement of D(s) in M(s)). �

Proof This follows immediately from taking all of these matrices at s → ∞, applying

Lemma 3.8.5, and then recovering proper inverses using Lemma 3.8.4.
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Chapter 4

Reconstruction of Proper LTI Dynamic Networks

We now build on the results of Chapters 2 and 3 to study the network reconstruction

problem. In network reconstruction, we are given either input-output data or an input-output

map, along with extra a priori information (either known or assumed) and seek to identify

the unique structured model that produced that data or input-output map. For our purposes,

the structured model we seek to identify (learn) is the DNF and the DSF.

4.1 Notation

Unless otherwise noted, we use the same notation used by previous chapters. In addition,

for n arbitrary matrices A1, A2, . . . , An, we have that A = A1 ⊕ A2 ⊕ · · · ⊕ An is the direct

sum of these matrices; i.e., A is a block-diagonal matrix where the i’th diagonal block

is Ai. If, for some Â, we have Â = A1 = A2 = . . . = An, then, for clarity, we write

A = Â⊕ n· · · ⊕ Â = A1 ⊕ · · · ⊕ An. For example, if

A1 =

1 2

3 4

 , A2 = 5, A3 =

6 0

0 7

 , (4.1)
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then

A1 ⊕ A2 ⊕ A3 =



1 2 0 0 0

3 4 0 0 0

0 0 5 0 0

0 0 0 6 0

0 0 0 0 7


, (4.2)

and

A1 ⊕
3· · · ⊕ A1 =



1 2 0 0 0 0

3 4 0 0 0 0

0 0 1 2 0 0

0 0 3 4 0 0

0 0 0 0 1 2

0 0 0 0 3 4


. (4.3)

4.2 Related Work and Contributions

Much of the research into network reconstruction can be split into three different problems,

namely (1) full reconstruction, (2) topological reconstruction, and (3) single module identifi-

cation. Here, we provide an overview of existing research tackling these three problems using

both state-space models and DSFs as the model they seek to reconstruct. We also describe

the contributions of this chapter to the overall reconstruction community.

Remark 4.2.1: Though we distinguish between state-space-model-based approaches

and DSF-based approaches, we note that the state-space-model-based approaches are a

special case of the DSF-based approaches. This holds since the state-space-model-based

assume full-state measurement (i.e., they assume that C = I), which are in one-to-one

correspondence with a special DSF that we call the full-state DSF (see Theorem 3.6.3).

We show the equivalence with a state space model with full state measurements

and a DSF. In the more general case where A is not hollow, then the equivalence is
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between a DNF and a state space model, instead of a DSF and a state space model. We

focus our attention on DSFs in this remark; however, the generalization to a DNF follows

in the same way.

Another way to see this equivalence is to consider a DSF in the time domain

(which we detail further in Section 4.4). Assume that P = 1
z
I and to consider the

convolutional form of this DSF given by

y(t) = Q(0)y(t) +Q(1)y(t− 1) +Q(2)y(t− 2) + · · ·+Q(t)y(0) + Pu(t)

= Q(0)y(t) +Q(1)y(t− 1) +Q(2)y(t− 2) + · · ·+Q(t)y(0) + z−1Iu(t)

= Q(0)y(t) +Q(1)y(t− 1) +Q(2)y(t− 2) + · · ·+Q(t)y(0) + u(t− 1), (4.4)

where the last equality holds since z−1 is the 1-step time delay operator.

Now, consider state space model such that A is hollow and B = C = I. The

dynamics of this state-space model is given by

y(t) = Ay(t− 1) + u(t− 1). (4.5)

Notice that (4.4) is equivalent to (4.5) in the special case where A = Q(1) and Q(0) =

Q(2) = Q(3) = · · · = Q(t) = 0. In particular, if we follow the steps in Section 2.4.1 to

convert this state space model into a DSF, we get

W̃ = A,

Ṽ = B,

diag W̃ = 0 since A is hollow

Q = (zI − diag W̃ )−1(W̃ − diag W̃ ) = Az−1

P = (zI − diag W̃ )−1Ṽ = z−1I.
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Thus, we have

y(z) = Q(z)y(z) + P (z)u(z)

= Az−1y(z) + z−1u(z) =⇒

y(t) = Ay(t− 1) + u(t− 1).

Hence, the convolutional form of this full-state DSF is precisely (4.5) and the state-space-

model-based approaches are a special case of the DSF-based approaches.

Note that several of the works in the reconstruction literature refer to DSFs under

different names, such as linear dynamical networks, linear dynamic influence models, or

network Granger causal models (this last one being a DSF in the time-domain where edges in

Q are finite impulse responses).

4.2.1 Full Reconstruction

The full network reconstruction problem seeks to reconstruct both the structure (i.e., the

topology or the zero-pattern of the network graph) and the dynamics (i.e., the weights or

operators on the non-zero edges in the network graph) of a dynamic network given some a

priori knowledge or assumptions about the structure of the network. The full reconstruction

problem is the primary focus of this work.

State-Space-Model-Based Approaches

Much of the early work in network reconstruction was performed to recover biochemical

reaction networks. The work in [49] gives the dynamics of biochemical reactions according

to the differential equation ẋ = f(x). It then proposed a method for finding the best fit for

entries in the Jacobian of f , which they use as the structured representation of this system.

This Jacobian is the matrix A in the state space model; thus, this method reconstructs

a linear approximation to an autonomous system in which every state is measured. In
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[50–52], information-theoretic methods–specifically Dynamic Bayesian Networks or Dynamic

Probabilistic Networks (which are autonomous state space models with full state measurement

where the signals are random variables and the entries in A are transition probabilities)–were

used to represent models of biochemical reaction networks.

The work [53] considers the problem of reconstructing a large-scale sparse network

of interconnected state-space models. In [54], the necessary identifiability index (see Defini-

tion 4.3.4) for reconstructing the general interconnection of state space models is presented

and shown to be strictly greater in almost every case than the identifiability index for a DSF

(meaning it is more expensive to reconstruct a network of interconnected state space models

than it is to reconstruct a DSF).

DSF-Based Approaches

The paper [55] shows that the reconstruction of biochemical reaction networks and other

similar systems using DSFs has considerable advantages over state-space-model-based and

other previous approaches. First, the DSF is invariant to coordinate changes among hidden

variables, meaning that it is a good representation of the structure between manifest variables.

Second, the DSF is probably an intermediate representation of structure; in other words, the

structure recovered through reconstruction has meaning concerning the relationships between

manifest variables. Other network representations–such as neural networks and Bayesian

networks–do not preserve these structural semantics.

Dynamical structure functions as a representation of LTI systems–as well as the

frequency-domain network reconstruction algorithm (see Section 4.3) to recover a DSF from

data–were first proposed in [19, 37, 55]. The works [2, 41, 43, 56] present enhancements to the

frequency-domain reconstruction methodology to make the algorithms robust to noisy data.

In [57], results from compressive sensing are used to reconstruct a DSF when Q is sparse.

This work also presents a methodology for reconstructing a network when only some subset of

the inputs are non-zero, which requires first finding an immersion of the network. The work
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[58] presents an alternative procedure to recover the dynamics of a proper and well-posed

network driven by rank-reduced noise using a weighted least squares in the situation where

the topology of the network is known.

An important concept which has arisen from the study of the frequency-domain

network reconstruction methods is an understanding of the fundamental limitations of

network reconstruction algorithms. Input-output data only gives input-output maps, and

additional information is necessary to get a unique structured representation of a system. See

[2, 43, 59]–as well as Definition 4.3.5 and Theorem 4.3.9 below–for the precise conditions for

the kind and quantity of information required to reconstruct a network. Additional studies

on identifiability conditions over the reconstruction of DSFs can be found in [28, 60, 61]

Early time-domain reconstruction processes (see Section 4.4) were introduced in [62–

65] and seek to solve the blind reconstruction problem (specifically, u(t) is not measured,

but is instead modeled by white noise). These works utilize the convolutional model (4.4),

requiring P = I, and leverage Granger causality and lasso regression techniques to reconstruct

their networks. They apply their reconstruction techniques to the reconstruction of financial

networks [62] and gene expression regulatory networks [63–65]. In [66], this line of research is

continued with a new lasso technique (group lasso regression) while additionally discussing

sufficient conditions for consistency in their regressions, with application to gene regulatory

networks (showing causal dependencies between gene expressions) and banking (showing

causal dependencies between items on a balance sheet). These results are generalized further

in [67], which reconstructs networks where more general non-linear dynamics govern Q.

In [68], the authors perform a comparison of Granger-causality-based reconstruction

techniques (such as [62–67]) and Bayesian inference models (such as [50–52]), finding that the

Bayesian inference performs better when there is little data available, and Granger-causality-

based reconstruction performs better when there is more data since Granger causality is more

sensitive to a small value of the interactions.
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In [2, 12, 20], a more general time-domain reconstruction procedure (allowing P to be

general) was introduced. It leveraged the results on the necessary and sufficient identifiability

conditions developed previously for the frequency-domain algorithms, providing a framework

for encoding a priori knowledge about a network. In [12, 18], variations of the time-domain

reconstruction algorithm are presented that reconstruct approximations of the network to

solve the blind reconstruction problem, with applications to the stock market and social media

respectively. Section 4.4 below builds upon these works (the non-blind case) by generalizing

even further and strengthening the identifiability results.

4.2.2 Topological Reconstruction

The topological reconstruction problem takes data and additional a priori assumptions about

a network and seeks to recover the structure, but not the dynamics, of the network. In other

words, it seeks to build a graph where the nodes are the inputs and outputs to the system

and an edge is present if and only if the causal dynamics directly connecting those nodes (and

independent of all other nodes) is non-zero. Topological reconstruction comes in two flavors:

undirected (where edges are undirected, hence the graph represents direct correlations between

manifest variables) and directed (where edges are directed, hence the graph represents the

direct causations between manifest variables). Most research on topological reconstructed

focuses on the undirected case.

State-Space-Model-Based Approaches

In the state-space-model-based approaches, the topology of interest is the (unweighted)

graphical structure of A.

In [69], a state-space model where C = I and B and D are both zero are considered

(i.e., they assume an autonomous state space model with full-state measurements), while

noting that full-state measurement is necessary for reconstruction1. The work then considers

1This result was also shown and generalized in [70] for the full reconstruction problem.
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various classes of A (such as those that model consensus networks and the general problem

where A ∈ R can be anything) and uses constrained Lyapunov functions to provide algorithms

that reconstruct the undirected topology of those classes provided that we meet the given

necessary and sufficient conditions.

DSF-Based Approaches

In the DSF-based topological reconstruction works, the topology of interest is the (unweighted)

graphical structure of Q. A restricted DSF (Q,P ) with P = I is typically considered. As

such, these networks are target-specific (see Definition 4.3.11 below) and the necessary

identifiability conditions established in below are satisfied (see Section 4.3.3). The works

typically also assume that the inputs u are generated by independent random processes,

which happens to satisfy the necessary data informativity conditions for the time-domain

network reconstruction algorithm we present in Section 4.4 (see Section 4.4.3 below). In

addition, these works often assume that the inputs are unmeasured; thus the reconstruction

is blind.

One of the earliest topological reconstruction works is contained in [55]. This work

focuses primarily on the full reconstruction problem; however, it also shows that the necessary

and sufficient identifiability conditions required to reconstruct the Boolean network (i.e., the

topology) are the same as for the full network reconstruciton problem.

An early solution was presented in [7]. In that work, a Wiener-filter-based approach

is used to recover the undirected topology of Q in the restricted case where the topology of

Q is a tree. This approach is applied to stock market data, showing that securities near each

other in the tree tend to be within the same industry. In [71], this approach is generalized,

allowing the reconstruction of undirected topologies of Q where Q is described by a self-kin

topology (which includes tree, polytree, and ring structures).

The works [72, 73] assume that the network of interest has a polytree structure and

use Wiener-filters to solve the undirected topological reconstruction problem. In [72], this
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methodology is used to create a network among cities in Europe using temperature data,

showing that the network is related to the geographic locations of the city. It was also used

to recover the topology of an undirected consensus network [74] and a power grid [75]. In

[73], the authors assume that we only measure some subset of the nodes in the network (i.e.,

in the language of this dissertation, they assume that we measure some immersion of the

network), showing that if the degree of each node that has been abstracted away is at least

three, with out-degree of at least two, then the topology of the base network can be recovered

using only measurements from the immersion.

The work [76] contains a more general DSF-based topological reconstruction algorithms.

Causal estimators based on Granger causality are combined with the previous techniques

to solve the undirected topological reconstructed problem. It requires no restrictions on the

topology of Q. Furthermore, it allows the dynamics of the true network to be proper2, and

not necessarily strictly proper, so long as there exists at least one strictly proper edge in

every cycle in the network. This condition is a sufficient condition for well-posedness3, and

the well-posedness results contained in Chapters 2 and 3 could be used to generalize this

algorithm further.

In [77], the authors use methods from the compressive sensing literature to generalize

even further. They provide an algorithm to solve the directed topology problem over a

DSF where each entry in Q is assumed to be a finite impulse response4. The earlier work

[78] likewise uses compressive sensing to reconstruct the directed topology of a network.

It performs its reconstruction in the time domain (unlike the previously-cited topological

2The work [76] claims to be the first to consistently reconstruct a network when entries in Q are proper
and not necessarily strictly proper. This claim, however, is untrue. The DSF-based frequency-domain full
reconstruction algorithm discussed in Sections 4.2.1 and 4.3 were introduced nearly a decade earlier and are
capable of reconstructing general proper networks without even requiring assumptions on well-posedness (see
Example 4.3.12). Furthermore, the single-module identification algorithms discussed in Section 4.2.3 were
introduced earlier and can also handle general proper networks.

3The condition is sufficient since this guarantees that every principle minor of Q(∞) is zero, implying
that every principle minor of I − Q(∞) is non-singular. Since I − Q(∞) is a principal minor of itself, by
Theorem 2.5.8, this implies that the network is well-posed. Furthermore, as discussed in 3.3.3 and 3.3.4,
this condition is also sufficient to guarantee that every immersion of this network is both representable and
well-posed.

4We require a similar assumption in our time-domain network reconstruction algorithm in Section 4.4.
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reconstruction works, which use the frequency domain) assuming that edges in Q are finite

impulse responses, and is capable of reconstructing the topology so long as the network

is sufficiently sparse. In [79], a similar problem setup is used but within a probabilistic

framework. A Bayesian approach (utilizing the stable-spline kernel estimator) is introduced

to solve the directed topological reconstruction problem.

In [80], the authors seek to discover the directed causal interactions between a pair of

nodes by using the directed information measure, which is based on Granger causality. This

approach is used to uncover the causal relationships between measurements of the primary

motor cortex of a monkey performing target reaching tasks.

4.2.3 Single Module Identification

Single-module identification assumes that the topology of some dynamic network is known,

but that the dynamics are unknown. It seeks to identify the dynamics of a single link (AKA

a module) in this network while leaving the dynamics of the remaining links unknown. Such

methodology can result in more efficient approach (compared to full network reconstruction

and topological reconstruction) regarding the number of signals that we need to measure to

perform the identification. Specifically, the other problems need to measure all inputs and

outputs in a dynamic system, whereas single-link identification only needs some subset.

All works within this section use the DSF as their model of a networked system. Most

of these works split the inputs into two components. The first is the p-dimensional signal

vector r, which defines the signals that are directly manipulated by the user. The second

is the p-dimensional signal vector e, which is defined by white noise. With H ∈ RP p×p

as a proper and diagonal matrix, v = He becomes a model of process noise and models a

stationary stochastic process with a rational spectral density and where each noise signal is

119



www.manaraa.com

independent of the others. With these definitions, the DSF becomes

y = Qy +

[
R H

]r
e

 , (4.6)

where Q,R ∈ RP p×p. Sometimes (such as in [46]) the problem is formulated such that R = I.

These works often allow P and Q to be proper and not necessarily strictly proper.

In consequence, they typically also assume a strong condition on well-posedness, requiring

that every principal minor of (I − Q(∞)) be non-zero. See Sections 3.3.3 and 3.3.4 for a

discussion on why these conditions are sufficient, but not necessary, for well-posedness. The

conditions guarantee that every node and hollow abstraction (and hence every immersion) are

also well-posed, a feature that is desirable for several of the techniques used in these works.

We will define the identifiability index in Section Definition 4.3.4, but in short, this

index specifies that it is necessary to know p2 − p modules in the DSF in order to perform a

full reconstruction. Since H is diagonal by construction, we know that the p2− p off-diagonal

entries of H are zero; thus (4.6) meets the necessary conditions required for full reconstruction.

The single-module identification problem was first posed in [46], which extends the

direct method, two-stage method, and joint-io method (which are all classic closed-loop

prediction error methods) to solve this problem. In [81], these results were extended to be

robust to noise on the sensors. The works [82, 83] combine Bayesian estimation with the

prediction error methods used previously to solve this problem. The works [28, 44, 45] are

further extensions to these methodologies and discuss conditions on identifiability (typically

referring to which signals need to be measured as opposed to which modules need to be

known) in the single-module setting where the network has a more general structure than

(4.6).

The works [34, 36] introduce the concept of immersion (which we discuss in Section

3.5 and use this concept to solve the single module-identification problem by ceasing to

measure variables not required. See Example 4.3.15 for more details on how immersion is
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used to solve the single-module identification problem and how this technique is tied to

the full reconstruction of an abstraction of the network. The works [35, 84, 85] follow the

same approach, but use a different type of abstraction (known as the indirect inputs method)

instead of the immersion to solve the problem. In [86, 87], another type of abstraction is

performed using graphical modules. Notions of d-separation and the Wiener filter are used

to perform the module identification.

Each of the works using abstractions to reduce the measured signal set seeks to find

the smallest set of nodes to measure; i.e., in the language of Chapter 3, they seek to minimize

|S| in order to successfully identify the module of choice in the network. In [88], the authors

note that these works only provide sufficient conditions on this minimal set. They then

proceed to combine both the immersion and the indirect inputs method to provide necessary

and sufficient conditions over this set. However, [88] still has not provided necessary and

sufficient conditions over this set for the identification of a single module when all possible

abstraction procedures are considered, and this problem remains open.

4.2.4 Contributions

In this chapter, we present a frequency-domain algorithm and a time-domain algorithm

to solve the full network reconstruction problem (i.e., to recover both the structure and

dynamics of some dynamic network). The frequency-domain algorithm is based directly on

[19, 37, 43, 55, 59], and assumes that all measurements are perfect (not noisy). We also

present the following novel contributions beyond this previous work:

• Generalization of the algorithm to reconstruct DNFs, including the necessary and

sufficient identifiability conditions required for such reconstruction.

• Examples showing that the original assumptions that the network is strictly proper are

overly strict; the procedure functions properly for proper networks and networks where

the edges are defined by arbitrary fields (Examples 4.3.12 and 4.3.14).

121



www.manaraa.com

• An example connecting this full reconstruction methodology to the single-module

reconstruction methodology presented in [34, 36] (Example 4.3.15).

• Examples connecting this full reconstruction methodology to the notions of immersions

and abstractions (Examples 4.3.15 and 4.3.16).

The time-domain reconstruction algorithm is based directly on [12, 20]. In addition to those

works, we present the following novel contributions:

• Generalization of the algorithm to reconstruct DNFs.

• Generalization of the algorithm to reconstruct proper (and not necessarily strictly

proper) networks.

• Presentation of the necessary quantity of data required for reconstruction (Lemma 4.4.5).

• Presentation of necessary data informativity conditions for reconstruction (Section

4.4.3).

4.3 Network Reconstruction in the Frequency Domain

While the focus of this work is the development of an algorithm to reconstruct proper networks

in the time domain, we first turn our attention to an algorithm to reconstruct networks in

the frequency domain. We do this since the frequency-domain reconstruction algorithm is

more straightforward to describe and provides keen insights into the time-domain algorithm.

Furthermore, the contrast between the two algorithms will provide an understanding of the

advantages and disadvantages of each.

4.3.1 Problem Formulation

Let (W,V ) be some unknown well-posed DNF such that W ∈ RP p×p and V ∈ RP p×m, with

corresponding transfer function G = (I −W )−1V ∈ RP p×m. Let G be known (i.e., G could

have been learned from data using a standard system identification technique). The problem

is to recover the unique (W,V ) given G.
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Remark 4.3.1: For simplicity of exposition, we assume that the DNF takes its values

from the set RP of proper rational functions. This assumption is strong in that is not

necessary for this algorithm; all results that we outline in this section will still hold if the

DNF takes its values from any field. We demonstrate this generality using the examples

in Section 4.3.4.

We also acknowledge that the set RP is not a field (if x ∈ RP is strictly proper,

then x−1 6∈ RP is improper). As such, the notion of well-posedness (see Chapter 2) is

a sufficient condition to ensure that the transfer function G also takes its values from

RP . Representability (see Chapter 3) becomes important too if we choose to reconstruct

an abstraction of a network rather than the original network as representability ensures

that the abstraction also takes its values from RP . If we do not require closure, or if our

DNF and transfer function take their values from fields (such as the set of all rational

polynomials), then we do not need to assume either representability or well-posedness.

Unfortunately, it is well-known that for any G, (W,V ) is not unique (in general, there

is an infinite number of (W,V ) corresponding to any G). Thus, this problem is ill-posed, and

we cannot solve it without additional a priori knowledge about (W,V ), which we call the

identifiability conditions. In the next section (Section 4.3.2), we will give a description of

these identifiability conditions as well as the necessary and sufficient conditions required for

reconstruction. In short, however, the problem is as follows:

Given the transfer function G and the necessary and sufficient identifiability

conditions required for reconstruction, find the unique (W,V ) such that G =

(I −W )−1V .

123



www.manaraa.com

4.3.2 Methodology

To solve the active reconstruction problem, note that

(I −W )G = V =⇒ G =

[
W V

]G
Ip

 . (4.7)

By transposing both sides, we get

G′ =

[
G′ Im

]W ′

V ′

 . (4.8)

Let ~g ∈ RP pm be the vectorization of G in row-major order; i.e., let

~g =

[
g11 . . . g1m . . . gp1 . . . gpm

]′
. (4.9)

Likewise let ~w ∈ RP p2
and ~v ∈ RP pm be the vectorizations of W and V respectively in

row-major order, and define θ ∈ RP p2+pm to be

θ =

[
~w′ ~v′

]′
. (4.10)

Introduce matrix L ∈ RP pm×p2+pm with

L =

[
G′ ⊕ p· · · ⊕G′ Im ⊕

p· · · ⊕ Im
]

=

[
G′ ⊕ p· · · ⊕G′ Ipm

]
(4.11)

so that the mapping

~g = Lθ (4.12)

from θ to ~g is equivalent to the mapping in (4.8).
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Now, note that every entry in ~g and L are known, whereas θ contains precisely the

p2 + pm unknown entries in both W and V . Thus, our problem reduces to this: given ~g and

L, find the unique θ such that ~g = Lθ.

Lemma 4.3.2: Let G ∈ RP p×m and let L = [LG Ipm], where

LG = G′ ⊕ p· · · ⊕G′. (4.13)

Then rankL = rank Ipm = pm. ♦

Proof We have that L ∈ RP pm×p2+pm; hence, rankL ≤ min{pm, p2 + pm} = pm. Further-

more, all of the columns in Ipm are trivially linearly independent; hence rankL ≥ rank Ipm =

pm. Thus rankL = pm.

Corollary 4.3.3: Let L be defined as above. It is necessary (though not sufficient) to reduce5

the dimension of the domain of L by at least p2 in order to make L injective (full column

rank), ♦

Proof By Lemma 4.3.2, rankL = pm. Thus, the dimension of the domain of L must

necessarily be less than or equal to pm in order to be full-column rank. Since the dimension

of the domain of L is p2 + pm, this dimension must necessarily be reduced by at least p2.

In order to solve for θ uniquely, we must replace L with an injective map by reducing

the dimension of its domain. Corollary 4.3.3 thus tells us that we must necessarily reduce

this dimension by at least p2 to find a unique θ. We call p2 the identifiability index, which we

define formally here.

Definition 4.3.4: Identifiability Index

The identifiability index for some transfer function G is the necessary amount of

structural information one needs to know in order form a bijection between (W,V ) and

5We defer the discussion of the reduction process to Definition 4.3.5.
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G such that G = (I − W )−1V . As shown in Corollary 4.3.3, if G, V ∈ RP p×m and

W ∈ RP p×p, the identifiability index is p2.

We also define the Identifiability Conditions as the actual structural information

required to reconstruct the network.

Definition 4.3.5: Identifiability Conditions

The identifiability conditions for some transfer function G is the structural information

one needs to know in order to form a bijection between (W,V ) and G such that G =

(I −W )−1V . Since the domain of the network corresponds to unknown entries in (W,V ),

the identifiability conditions required to reconstruct take the following form:

• Knowledge that some entry in W or V is zero.

• Knowledge that some entry in W or V is a linear combination of the other entries.

The identifiability index (Definition 4.3.4) tells us that we need knowledge (in one of the

above forms) of at least p2 entries of W and V .

Remark 4.3.6: Previous work treat “identifiability conditions” and “identifiability

index” as synonymous (using only the term “identifiability conditions”). However, for

clarity, we find it convenient to separate the definitions. The identifiability conditions

define a set of information required to reconstruct the network, whereas the identifiability

index is a measure of the necessary minimum size of this set.

Remark 4.3.7: Some previous work (e.g., [19]) often refers to the “identifiability con-

ditions” as “informativity conditions,” though others (see, for instance, [19, 43]) use

“identifiability conditions” as we do here.

In this chapter, we reserve “informativity” to refer to the richness of the input-

output data. For the frequency-domain reconstruction algorithm, we have implicitly

assumed that the input-output data is informative; i.e., that the data is rich enough to
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recover the correct transfer function G through standard system identification techniques.

However, informativity becomes a more important subject in the time-domain recon-

struction algorithm since it uses the input-output data rather than reconstructing from a

given transfer function.

To encode the identifiability conditions, we introduce a matrix K ∈ RP p2+pm×k. Let

θ̂ = K+θ ∈ RP k and M = LK ∈ RP pm×k, (4.14)

where K+ is the Moore-Penrose Pseudo Inverse of K (which we never actually need to

compute). Thus, the problem is reduced further to finding the unique θ̂ such that

~g = (LK)(K+θ) = Mθ̂, (4.15)

which is solvable if M is injective. Once θ̂ is known, we can uniquely recover θ, containing all

values in (W,V ), with

θ = Kθ̂. (4.16)

The following result contains the necessary conditions for M to be injective:

Lemma 4.3.8: Let L ∈ RP pm×p2+pm and K ∈ RP p2+pm×k be defined as above, with M =

LK. Then M is injective only if k ≤ pm and rankK = k (i.e., K is injective). ♦

Proof Assume, to the contrary, that k > pm or that rankK 6= k (implying that rankK < k).

In the first case where k > pm, M = LK cannot be injective (full column rank) since M

has k > pm columns and rankM ≤ min{pm, k} = pm < k. Now assume that k ≤ pm but

rankK < k. Then we have that

rankM = rankLK ≤ min{rankL, rankK} = min{pm, rankK} < k. (4.17)

Thus, M cannot be full column rank.
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With these results, we are now prepared to give the necessary and sufficient conditions

(recall that we have already shown that meeting the identifiability index p2 is necessary) for

reconstructing some network.

Theorem 4.3.9 (Identifiability Conditions): Let G ∈ RP p×m be some transfer function

and let (W,V ) (with W ∈ RP p×p and V ∈ RP p×m) be a DNF such that (I−W )−1V = G. Let

L ∈ RP pm×p2+pm be defined as in (4.11), and let K ∈ RP k×p2+pm encode the identifiability

conditions (i.e., the structural information known about the network). Then, there is a

bijection between G and (W,V ) (i.e., (W,V ) can be reconstructed uniquely from G) if and

only if the following conditions on K hold:

1. M , LK is injective

2. ~g ∈ R(M), where R(M) is the range of M ♦

Proof Observe that M is the mapping from unidentified model parameters θ̂ (recall that

all model parameters θ can be recovered uniquely from θ̂) to the known parameters ~g of

the transfer function G. The two conditions listed above are well-known to ensure that θ̂ is

computed uniquely.

Remark 4.3.10: Lemma 4.3.8 is a result about the identifiability conditions encoded by

K and provides the conditions necessary for reconstruction. In practice, if K is designed

such that these necessary conditions are satisfied, then often (but not always), the neces-

sary and sufficient conditions outlined in Theorem 4.3.9 are also satisfied. This suggests

that the work-flow should be to assume or discover enough identifiability conditions to

satisfy Lemma 4.3.8, then check to see if the conditions also satisfy Theorem 4.3.9. If

Theorem 4.3.9 is not satisfied, then more (or sometimes less) identifiability conditions

will need to be encoded and this process repeated.
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Thus, with an injective M , we can uniquely compute θ̂ uniquely using either matrix

inversion or linear regression (we use least squares here) as follows:

θ̂ =

 M−1~g if rankM = k = pm

(M ′M)−1M ′~g if rankM = k < pm
(4.18)

Recall from (4.16) that θ = Kθ̂ is unique. Furthermore, θ encodes all values in W and V ,

and so we can uniquely extract our reconstructed DNF from θ, thus solving our problem.

In summary, the frequency-domain network reconstruction algorithm proceeds accord-

ing to Algorithm 1.

4.3.3 Special Cases: Reconstructing a DSF and Target Specificity

Before this work, all of the network reconstruction literature presents methods to reconstruct

DSFs instead of DNFs. Recall that a DSF (Q,P ) is a special case of a DNF (W,V ) where Q

is hollow, meaning that all diagonal entries of Q are known to be zero. As such, we already

know p values of (Q,P ), reducing the identifiability index to p2 − p.

In the further special case where we are reconstructing a DSF such p = m (i.e., G and

P are both square), a common choice of identifiability conditions is called target specificity,

which we define formally below.

Definition 4.3.11: Target Specificity

Assume that G,Q, P ∈ RP p×p with Q hollow. Target Specificity is the additional

assumption that P is diagonal, meaning that we know that the p2− p off-diagonal entries

of P are all zero.

Since target specificity further specifies p2 − p entries in (Q,P ), we have met the

necessary conditions (the identifiability index) for reconstruction.
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Algorithm 1 Frequency Domain Network Reconstruction

1: procedure ReconstructFreq(G,K) . Find (W,V ) from G given identifiability K
2: p,m← Shape(G)
3: , k ← Shape(K)
4: assert(G ∈ RP p×m) . Can relax RP to any field F
5: assert(K ∈ RP p2+pm×k) . Can relax RP to any field or restrict to R
6: assert(k ≤ pm and rankK = k) . Lemma 4.3.8
7: ~g ← [G11, G12, · · · , Gpm]′ ∈ RP pm

8: LG ← G′ ⊕ p· · · ⊕G′ ∈ RP pm×p2

9: L← [LG Ipm] ∈ RP pm×p2+pm

10: M ← LK ∈ RP pm×k

11: assert(rankM = k and ~g ∈ R(M)) . Theorem 4.3.9
12: if k = pm then . M is square, just invert
13: θ̂ ←M−1~g ∈ RP pm

14: else . M is “tall,” use least squares
15: θ̂ ← (M ′M)−1M ′~g ∈ RP pm

16: end if
17: θ ← Kθ̂ ∈ RP p2+pm

18: W ←

 θ1 · · · θp
...

. . .
...

θp2−p+1 · · · θp2

 ∈ RP p×p . Extract W from θ

19: V ←

 θp2+1 · · · θp2+m
...

. . .
...

θp2+pm−m+1 · · · θp2+pm

 ∈ RP p×m . Extract V from θ

20: return W,V . Return the reconstructed DNF
21: end procedure
22: procedure Shape(M) . M ∈ Fm×n for any field F
23: return m,n . Rows, Cols in M
24: end procedure
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4.3.4 Numeric Examples

We now demonstrate the frequency-domain reconstruction algorithm with several examples,

each of which illustrates the various capabilities of this algorithm.

Example 4.3.12: A Target-Specific, Proper, and Ill-Posed DSF

This example is, perhaps, the simplest example of reconstruction. Reconstruction of

target-specific strictly proper DSFs have long been demonstrated; however, the algorithm

was always capable of reconstructing proper networks as well, even if they are ill-posed

(see Chapter 2 for definitions of well-posed and ill-posed networks). We demonstrate that

here.

Let

Q =


0 z+2

z+1
0

0 0 z+3
z+4

(z+1)(z+5)
(z+2)(z+3)

1
z2+2

0

 , P =


z+4
z+1

0 0

0 1
z2+2

0

0 0 z+6
z+3

 (4.19)

Note that Q is hollow, meaning that we have a DSF. Note also that P is diagonal,

meaning that we can assume target specificity. Note that neither Q nor P are strictly

proper. Note that p = m = 3. Finally note that

I −Q(∞) =


1 −1 0

0 1 −1

−1 0 1

 (4.20)

is singular, thus by Theorem 2.5.8, this network is ill-posed. We also have that

G = [Gij] =


− (z+4)(z3+4z2+z+5)

(z+1)(z2+z+5)
− (z+2)(z+4)

(z+1)(z2+z+5)
− (z+2)(z+6)(z2+2)

(z+1)(z2+z+5)

− (z+4)(z+5)(z2+2)
(z+2)(z2+z+5)

− z+4
z2+z+5

− (z+6)(z2+2)
z2+z+5

− (z+4)2(z+5)(z2+2)
(z+2)(z+3)(z2+z+5)

− (z+4)(z3+5z2+3z+13)
(z+3)(z2+2)(z2+z+5)

− (z+4)(z+6)(z2+2)
(z+3)(z2+z+5)

 . (4.21)
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Notice that G has improper terms, violating our strong conditions that our rational

functions be in RP . This is an artifact of (Q,P ) being ill-posed, however, we will still be

able to reconstruct since the set RP above can be relaxed to arbitrary fields.

Thus, we have that

L =


G′ 0 0 I3 0 0

0 G′ 0 0 I3 0

0 0 G′ 0 0 I3

 and ~g =



− (z+4)(z3+4z2+z+5)
(z+1)(z2+z+5)

− (z+2)(z+4)
(z+1)(z2+z+5)

− (z+2)(z+6)(z2+2)
(z+1)(z2+z+5)

− (z+4)(z+5)(z2+2)
(z+2)(z2+z+5)

− z+4
z2+z+5

− (z+6)(z2+2)
z2+z+5

− (z+4)2(z+5)(z2+2)
(z+2)(z+3)(z2+z+5)

− (z+4)(z3+5z2+3z+13)
(z+3)(z2+2)(z2+z+5)

− (z+4)(z+6)(z2+2)
(z+3)(z2+z+5)



, (4.22)

each of which contains known values.

132



www.manaraa.com

To encode that we are reconstructing a target-specific DSF, chooseK ∈ RP p2+pm×pm

such that

K =



0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1



(Q11 = 0)

(Q12 =?)

(Q13 =?)

(Q21 =?)

(Q22 = 0)

(Q23 =?)

(Q31 =?)

(Q32 =?)

(Q33 = 0)

(P11 =?)

(P12 = 0)

(P13 = 0)

(P21 = 0)

(P22 =?)

(P23 = 0)

(P31 = 0)

(P32 = 0)

(P33 =?)

(4.23)

Note that this matrix maps Q12 to θ̂1 (since the one corresponding to the Q12 row is in

the first column), Q13 to θ̂2, etc.
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Compute M = LK. It can be checked that M is square and non-singular; thus

we meet both the necessary and sufficient conditions for reconstruction. Now compute

θ̂ = M−1~g =



z+2
z+1

0

0

z+3
z+4

(z+1)(z+5)
(z+2)(z+3)

1
z2+2

z+4
z+1

1
z2+2

z+6
z+3



. (4.24)
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Finally, recover the unknown parameters in (Q,P ) with

θ = Kθ̂ =



Q11

Q12

Q13

Q21

Q22

Q23

Q31

Q32

Q33

P11

P12

P13

P21

P22

P23

P31

P32

P33



=



0

z+2
z+1

0

0

0

z+3
z+4

(z+1)(z+5)
(z+2)(z+3)

1
z2+2

0

z+4
z+1

0

0

0

1
z2+2

0

0

0

z+6
z+3



, (4.25)

which gives the reconstructed DSF as

Q =


0 z+2

z+1
0

0 0 z+3
z+4

(z+1)(z+5)
(z+2)(z+3)

1
z2+2

0

 , P =


z+4
z+1

0 0

0 1
z2+2

0

0 0 z+6
z+3

 . (4.26)

Notice that the reconstructed DSF is the same as the original DSF in (4.19).
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Example 4.3.13: Exceeding the Identifiability Index

In this example, we will demonstrate the reconstruction of a DSF when m > p and where

we have more structural information than necessary to reconstruct. Let

Q =

 0 1
z+1

1
z+2

0

 , P =

 1
z+3

0 0

2z+7
(z+3)(z+4)

1
z+4

1
z+5

 (4.27)

be our original unknown DSF that we wish to recover. Thus, the known transfer function

is

G = (I −Q)−1P =

 (z+2)(z2+7z+11)
(z+3)(z+4)(z2+3z+1)

z+2
(z+4)(z2+3z+1)

z+2
(z+5)(z2+3z+1)

2(z+1)(z+3)
(z+4)(z2+3z+1)

(z+1)(z+2)
(z+4)(z2+3z+1)

(z+1)(z+2)
(z+5)(z2+3z+1)

 . (4.28)

The identifiability index over the DNF requires that we know p2 = 4. We will assume

that we know that Q11 = Q22 = P12 = P13 = 0 and that P21 = P11 + P22. Thus we know

5 > p2. To encode this information, let

K =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1



(Q11 = 0)

(Q12 =?)

(Q21 =?)

(Q22 = 0)

(P11 =?)

(P12 = 0)

(P13 = 0)

(P21 = P11 + P22)

(P22 =?)

(P23 =?)

(4.29)
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We also have, from the known values of the transfer function, that

L =

G′ 0 I3 0

0 G′ 0 I3

 and ~g =



(z+2)(z2+7z+11)
(z+3)(z+4)(z2+3z+1)

z+2
(z+4)(z2+3z+1)

z+2
(z+5)(z2+3z+1)

2(z+1)(z+3)
(z+4)(z2+3z+1)

(z+1)(z+2)
(z+4)(z2+3z+1)

(z+1)(z+2)
(z+5)(z2+3z+1)


. (4.30)

With this information, we compute

M = LK =



2(z+1)(z+3)
(z+4)(z2+3z+1)

0 1 0 0

(z+1)(z+2)
(z+4)(z2+3z+1)

0 0 0 0

(z+1)(z+2)
(z+5)(z2+3z+1)

0 0 0 0

0
(z+2)(z2+7z+11)

(z+3)(z+4)(z2+3z+1)
1 1 0

0 z+2
(z+4)(z2+3z+1)

0 1 0

0 z+2
(z+5)(z2+3z+1)

0 0 1


(4.31)

It can be verified that M is full column rank and thus meets our necessary and sufficient

identifiability conditions. Since M is not square, we use least squares instead of a matrix
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inverse so solve for our unique θ̂ and θ. This gives

θ̂ = (M ′M)−1M ′~g =



1
z+1

1
z+2

1
z+3

1
z+4

1
z+5


and θ = Kθ̂ =



Q11

Q12

Q21

Q22

P11

P12

P13

P21

P22

P33



=



0

1
z+1

1
z+2

0

1
z+3

0

0

2z+7
(z+3)(z+4)

1
z+4

1
z+5



. (4.32)

And from θ, we recover (4.27) exactly.

Example 4.3.14: A DNF from a General Field

In this example, we demonstrate the reconstruction of a DNF (instead of a DSF) where

elements of the DNF are functions of some z > 0 ∈ R (instead of rational functions of

z ∈ C). Let (W,V ), with

W =

sin(z) log(z)
z

0 sin(z)− log(z)
z

 and V =

z2 + 2z + 3 z

sin(z) z

 (4.33)

be the unknown DNF we are attempting to reconstruct. Then our known transfer function

is given by

G = (I −W )−1V
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=

−(z2+2z+3)(−z sin (z)+z+log (z))+log (z) sin (z)

(sin (z)−1)(−z sin (z)+z+log (z))
z(z sin (z)−z−2 log (z))

(sin (z)−1)(−z sin (z)+z+log (z))

z sin (z)
−z sin (z)+z+log (z)

z2

−z sin (z)+z+log (z)

 . (4.34)

To meet our identifiability conditions (we must know p2 = 4 things about the structure

of this network), assume that we know that Q21 = 0, Q22 = Q11 −Q12, P21 = Q11, and

P22 = P12. To encode this knowledge, let

K =



1 0 0 0

0 1 0 0

0 0 0 0

1 −1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 0 0 1



(Q11 =?)

(Q12 =?)

(Q21 = 0)

(Q22 = Q11 −Q12)

(P11 =?)

(P12 =?)

(P21 = Q11)

(P22 = P12)

(4.35)

From knowledge of G, we have that

L =

G′ 0 I2 0

0 G′ 0 I2

 and ~g =



−(z2+2z+3)(−z sin (z)+z+log (z))+log (z) sin (z)

(sin (z)−1)(−z sin (z)+z+log (z))

z(z sin (z)−z−2 log (z))
(sin (z)−1)(−z sin (z)+z+log (z))

z sin (z)
−z sin (z)+z+log (z)

z2

−z sin (z)+z+log (z)


. (4.36)
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Given this, we can compute

M = LK =



−(z2+2z+3)(−z sin (z)+z+log (z))+log (z) sin (z)

(sin (z)−1)(−z sin (z)+z+log (z))
z sin (z)

−z sin (z)+z+log (z)
1 0

z(z sin (z)−z−2 log (z))
(sin (z)−1)(−z sin (z)+z+log (z))

z2

−z sin (z)+z+log (z)
0 1

−z−log (z)
z sin (z)−z−log (z)

z sin (z)
z sin (z)−z−log (z)

0 0

z2

−z sin (z)+z+log (z)
z2

z sin (z)−z−log (z)
0 1


. (4.37)

Since M is square and detM 6= 0, we meet the necessary and sufficient identifiability

conditions for reconstruction. Thus, we have

θ̂ =



sin (z)

log (z)
z

z2 + 2z + 3

z


=⇒ θ = Kθ̂ =



Q11

Q12

Q21

Q22

P11

P12

P21

P22



=



sin (z)

log (z)
z

0

sin (z)− log (z)
z

z2 + 2z + 3

z

sin (z)

z



, (4.38)

which yields (4.33) when the values of (W,V ) are extracted, as desired.

Example 4.3.15: Reconstructing an Immersion

Suppose that the unknown network that we wish to reconstruct defines the relationship


Y1

Y2

Y3

 =


0 1

z+1
0

0 0 1
z+2

1
z+3

1
z+4

0



Y1

Y2

Y3

+


1
z+5

0 0

0 1
z+6

0

0 0 1
z+7



U1

U2

U3

 , QY + PU. (4.39)
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This implies that the transfer function G of our system defines the relationship

[
Y1

Y2

Y3

]
=


(z+1)(z+3)

(
z2+6z+7

)
(z+5)

(
z4+10z3+34z2+45z+17

) (z+2)(z+3)(z+4)

(z+6)
(
z4+10z3+34z2+45z+17

) (z+3)(z+4)

(z+7)
(
z4+10z3+34z2+45z+17

)
(z+1)(z+4)

(z+5)
(
z4+10z3+34z2+45z+17

) (z+1)(z+2)(z+3)(z+4)

(z+6)
(
z4+10z3+34z2+45z+17

) (z+1)(z+3)(z+4)

(z+7)
(
z4+10z3+34z2+45z+17

)
(z+1)(z+2)(z+4)

(z+5)
(
z4+10z3+34z2+45z+17

) (z+2)
(
z2+5z+7

)
(z+6)

(
z4+10z3+34z2+45z+17

) (z+1)(z+2)(z+3)(z+4)

(z+7)
(
z4+10z3+34z2+45z+17

)

[U1

U2

U3

]
.

Suppose that, while we don’t know the dynamics of our network, but we do know its

structure. In other words, we do know that the structure of (Q,P ), which we denote

with (Q?, P ?), is given by

Q? =


0 ? 0

0 0 ?

? ? 0

 and P ? =


? 0 0

0 ? 0

0 0 ?

 , (4.40)

where a ? signifies any non-zero value in RP .

The identifiability index for this DSF is p2 − p = 6. With the knowledge of the

structure given above, we know that the six off-diagonal entries of P are zero and that

an additional two non-diagonal entries of Q are also zero, giving us more than enough

information to meet the necessary conditions for reconstruction. Suppose, however, that

we are only given GS, defined as the first two rows of the transfer function (this happens,

for instance, if Y3 is impossible or expensive to measure). Since we do not know Y3, we

cannot reconstruct our base network; however, we can reconstruct an immersion.

By following the immersion procedure outlined in Chapter 3, we find that the

structure (Q?
S, P

?
S) of the immersion (QS, PS) is given by

Q?
S =

0 ?

? 0

 and P ?
S =

? 0 0

0 ? ?

 . (4.41)

We note that in (4.40), a ? represented a non-zero value in RP by construction. However,

in (4.41, a ? could be zero as well. However, a ? will only be zero if there is an exact
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cancellation in the immersion process, which almost never happens. Nonetheless, this

issue is not significant as we can reconstruct the immersion, regardless of whether any

given ? is zero or not, provided that we meet the necessary and sufficient conditions for

reconstruction.

For this immersion, the identifiability index is 2 (or 4 if this is a DNF, though

we add knowledge that Q11 = 0 and Q22 = 0 into our identifiability conditions). Since

we know the structure of the immersion, we can encode our knowledge that P12 = 0

and P21 = 0 in K. We could also encode knowledge that P13 = 0; however, this extra

information is unnecessary and the least squares solution tends to run more slowly than

the matrix inversion, and so we do not encode this information. We have

K =



0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(Q11 = 0)

(Q12 =?)

(Q21 =?)

(Q22 = 0)

(P11 =?)

(P12 = 0)

(P13 =?)

(P21 = 0)

(P22 =?)

(P23 =?)

(4.42)
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We also have, from the known values of the transfer function GS (which, again, is the

first two rows of the transfer function G), that

L =

G′S 0 I3 0

0 G′S 0 I3

 and ~g =



(z+1)(z+3)(z2+6z+7)
(z+5)(z4+10z3+34z2+45z+17)

(z+2)(z+3)(z+4)
(z+6)(z4+10z3+34z2+45z+17)

(z+3)(z+4)
(z+7)(z4+10z3+34z2+45z+17)

(z+1)(z+4)
(z+5)(z4+10z3+34z2+45z+17)

(z+1)(z+2)(z+3)(z+4)
(z+6)(z4+10z3+34z2+45z+17)

(z+1)(z+3)(z+4)
(z+7)(z4+10z3+34z2+45z+17)


. (4.43)

With this information, we compute

M = LK =



(z+1)(z+4)
(z+5)(z4+10z3+34z2+45z+17)

0 1 0 0 0

(z+1)(z+2)(z+3)(z+4)
(z+6)(z4+10z3+34z2+45z+17)

0 0 0 0 0

(z+1)(z+3)(z+4)
(z+7)(z4+10z3+34z2+45z+17)

0 0 1 0 0

0
(z+1)(z+3)(z2+6z+7)

(z+5)(z4+10z3+34z2+45z+17)
0 0 0 0

0 (z+2)(z+3)(z+4)
(z+6)(z4+10z3+34z2+45z+17)

0 0 1 0

0 (z+3)(z+4)
(z+7)(z4+10z3+34z2+45z+17)

0 0 0 1


. (4.44)
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It can be verified that M is non-singular and thus meets our necessary and sufficient

identifiability conditions. Thus, we have that

θ̂ = M−1~g =



1
z+1

z+4
(z+3)(z2+6z+7)

1
z+5

0

(z+2)(z+4)
(z+6)(z2+6z+7)

z+4
(z+7)(z2+6z+7)


and θ = Kθ̂ =



[QS]11

[QS]12

[QS]21

[QS]22

[PS]11

[PS]12

[PS]13

[PS]21

[PS]22

[PS]33



=



0

1
z+1

z+4
(z+3)(z2+6z+7)

0

1
z+5

0

0

0

(z+2)(z+4)
(z+6)(z2+6z+7)

z+4
(z+7)(z2+6z+7)



. (4.45)

Notice that if we let S = {1, 2}, which encodes that we can measure Y1 and Y2,

but not Y3, then the immersion (QS, PS) = I(Q,P | S) is given by

QS =

 0 1
z+1

z+4
(z+3)(z2+6z+7)

0

 and PS =

 1
z+5

0 0

0 (z+2)(z+4)
(z+6)(z2+6z+7)

z+4
(z+7)(z2+6z+7)

 . (4.46)

Notice that (4.46) is precisely the DSF extracted from (4.45). Thus our network recon-

struction technique is capable of reconstructing an immersion when not all input-output

data cannot be measured.

In Section 4.2.3, we describe single-module identification as a different problem in

network reconstruction, which is ideal for some problems as it does not require expensive

measurements of all outputs to the system. This example suggests the technique that is

used to perform single-module identification in [34, 36, 88].
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Some additional steps, however, are necessary to perform a single module iden-

tification. As we did above, we start by assuming knowledge of the structure (but not

the dynamics) of some system. The problem is to identify the dynamics of one (or some

subset) of the non-zero entries (which are called modules) in Q and/or P . However,

instead of choosing some arbitrary immersion, we select an immersion such that the

module(s) we wish to identify is invariant under the immersion process. Thus, when we

identify the complete immersion, we can read off the dynamics of the desired module(s)

directly from the reconstructed network. The problem then becomes to select an S

(specifying our immersion) that accomplishes this such that |S| is minimized.

Example 4.3.16: Assuming a DSF When Reconstructing a DNF

Suppose that the unknown DNF that we wish to reconstruct is given by

W =

 1
z+1

1
z+2

1
z+3

1
z+4

 and V =

 1
z+5

0

0 1
z+6

 , (4.47)

and suppose that the only information we have about the network is that V12 = V21 = 0.

The identifiability index for this DNF is 4; however, we only know 2, and so we do not

meet the necessary conditions for reconstruction. Suppose, however, that we assume that

we have a DSF instead of a DNF (i.e., we make the additional and false assumption that

W11 = W22 = 0), which allows us to meet the necessary conditions. As we will show

in this example, we will not reconstruct the true network; however, the network we do

reconstruct is still meaningful.

We have that

G = (I −W )−1V =

 (z+1)(z+2)(z+3)2

(z+5)(z4+8z3+20z2+13z−4)
(z+1)(z+3)(z+4)

(z+6)(z4+8z3+20z2+13z−4)

(z+1)(z+2)(z+4)
(z+5)(z4+8z3+20z2+13z−4)

z(z+2)(z+3)(z+4)
(z+6)(z4+8z3+20z2+13z−4)

 , (4.48)
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and assume that this transfer function is known. This gives

~g =



(z+1)(z+2)(z+3)2

(z+5)(z4+8z3+20z2+13z−4)

(z+1)(z+3)(z+4)
(z+6)(z4+8z3+20z2+13z−4)

(z+1)(z+2)(z+4)
(z+5)(z4+8z3+20z2+13z−4)

z(z+2)(z+3)(z+4)
(z+6)(z4+8z3+20z2+13z−4)


(4.49)

and

L =

G′ 0 I2 0

0 G′ 0 I2

 . (4.50)

To encode our knowledge that V21 = V12 = 0 and our false assumption that

W11 = W22 = 0, let

K =



0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1

0 0 0 0



(W11 = 0)

(W12 =?)

(W21 =?)

(W22 = 0)

(V11 =?)

(V12 = 0)

(V21 =?)

(V22 = 0)

(4.51)

This gives

M = LK =



(z+1)(z+2)(z+4)
(z+5)(z4+8z3+20z2+13z−4)

0 1 0

z(z+2)(z+3)(z+4)
(z+6)(z4+8z3+20z2+13z−4)

0 0 0

0 (z+1)(z+2)(z+3)2

(z+5)(z4+8z3+20z2+13z−4)
0 0

0 (z+1)(z+3)(z+4)
(z+6)(z4+8z3+20z2+13z−4)

0 1


. (4.52)
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We have that M is square and non-singular, thus we meet the necessary and sufficient

conditions for reconstruction and can compute (noting that, since we are extracting into

a DSF, we label θ with Q and P instead of our true W and V ):

θ̂ = M−1~g =



z+1
z(z+2)

z+4
(z+3)2

z+1
z(z+5)

z+4
(z+3)(z+6)


and θ =



Q11

Q12

Q21

Q22

P11

P12

P21

P22



=



0

z+1
z(z+2)

z+4
(z+3)2

0

z+1
z(z+5)

0

0

z+4
(z+3)(z+6)



. (4.53)

This gives our reconstructed DSF as

Q =

 0 z+1
z(z+2)

z+4
(z+3)2 0

 and P =

 0 z+1
z(z+2)

z+4
(z+3)2 0

 . (4.54)

Notice that, as expected, (Q,P ) is not equal to (W,V ). However, recall from Chapter

3 that the hollow abstraction H(W,V ) of some DNF is a DSF where we have set the

diagonal entries to zero while preserving the input-output behavior. This is also what we

have done with our false assumption that W11 = W22 = 0, and it can be checked that

(Q,P ) = H(W,V ).

In Chapter 3, we noted one connection between abstractions and network recon-

struction and that is that an abstraction is a network that can be reconstructed with

fewer identifiability conditions (meaning a lower identifiability index) than the original

network.
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This example and Example 4.3.15 suggests a second and deeper connection

between network reconstruction and abstractions. This connection is that identifiability

conditions, together with the set of signals that are measured, specify an

abstraction of the true network we desire to reconstruct. In the previous example, we

reconstructed an immersion by ceasing to measure one of the outputs of the system. In

this example, we reconstructed a hollow abstraction by assuming that the diagonal entries

of W were zero, even though they were not zero in the original network. Sometimes

we do not have enough information to meet the identifiability index required for some

network; however, we can use abstractions to relax this condition, so long as we preserve

some set of desired properties about the network.

4.4 Network Reconstruction in the Time Domain

We now turn our attention to an algorithm to reconstruct a discrete-time network in the time

domain. Such an algorithm is convenient since, for many applications, the input-output data

we measure and record are measurements taken at discrete time points, and this algorithm is

designed to reconstruct a network directly from such data.

Remark 4.4.1: The works [12, 20] refer as the time-domain reconstruction algorithm

as “passive network reconstruction.” The term “passive” refers to the problem of

reconstructing a network where inputs are observed but not controlled, and the time-

domain reconstruction algorithm was first developed to solve that problem. In this

chapter, we note that both the frequency- and the time-domain reconstruction algorithms

are capable of reconstructing the network–regardless of whether or not we control the

inputs. However, care must be taken to ensure that the input-output data is informative

enough to reconstruct the network (see Theorem 4.4.7 for necessary data informativity

conditions on a common subclass of problems).
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4.4.1 Problem Formulation

Let (W (z), V (z)) be a discrete-time DNF (with transfer function G(z) = (I −W (z))−1V ).

Let W (t), V (t), and G(t) be the impulse responses of W (z), V (z), and G(z) found by taking

the inverse Z-transform. Suppose that this system is defined such that

• Every Wij ∈ RP and every Vij ∈ RP

• (W,V ) is well-posed (which implies that every Gij ∈ RP )

• G is bounded-input, bounded-output (BIBO) stable6

• There exists a finite r such that every Wij(t) ≈ 0 and Vij(t) ≈ 0 for every t > r

• All initial conditions are zero

Suppose also that W (z), V (z), G(z), W (t), V (t), and G(t) are unknown.

Remark 4.4.2: The list of constraints above highlights the major disadvantage of using

the time-domain reconstruction algorithm over the frequency-domain algorithm: the set

of networks that it is capable of reconstructing is significantly smaller than with the

frequency-domain algorithm (which does not impose any of the above constraints on

the networks). Furthermore, this algorithm is not solving a new problem; the frequency-

domain algorithm paired with standard system identification already provides a solution

to the problem posed in this section.

That said, there are many practical advantages to using this algorithm over the

frequency-domain algorithm. We defer a discussion of these advantages to Section 4.4.4.

Suppose that we are given input data u(t) and output data y(t) = G(t) ∗ u(t) =

W (t) ∗ y(t) + V (t) ∗ u(t) (where ∗ is the convolution operator) for t = 0, 1, . . . , T with

T ≥ k
p
(r+ 1)− 1 (where k ≤ pm is the number of unknown entries in W and V that we must

6BIBO stability on our transfer function may be a strong and unnecessary condition, but ensures that
our inputs don’t become negligibly small with respect to our outputs, which leads to uninformative data
preventing us from reconstructing.
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reconstruct; we will discuss why this limitation on the amount of data exists in Lemma 4.4.5).

The problem is to find the unique (W (t), V (t)) that generated the data.

Remark 4.4.3: Previous formulations in [12, 20] seek to recover the unique frequency-

domain representation (W (z), V (z)) instead of the time-domain representation (W (t), V (t)).

In those works, the impulse responses for (W (t), V (t)) are recovered first. Each Wij(t)

and Vij(t) is then projected (using a non-convex optimization algorithm) into a space

which was called the convolutional form. Using the definitions for the Z-transform and

the inverse Z-transform, the works above show that this space is equivalent to a restricted

set of proper rational functions of a fixed order and where the rational function could be

decomposed using a partial fraction decomposition into a sum of rational functions with

degree 0 in the numerator and degree 1 in the denominator. From this convolutional

form, it was a simple matter to convert back into the frequency domain.

For this work, we consider the transformation into the frequency domain to be a

separate problem from network reconstruction and do not discuss it further.

As with the frequency-domain reconstruction problem, this problem is impossible to

solve without additional a priori information about the structure of the network. However,

we will show in this section that it can be solved with precisely the same kind and amount of

information as is used in the frequency-domain reconstruction algorithm.

4.4.2 Methodology

Suppose that the true network generating our given data is given by

Y (z) = W (z)Y (z) + V (z)U(z). (4.55)

Since we have assumed zero initial conditions, the inverse Z-transform of this network yields

y(t) = W (t) ∗ y(t) + V (t) ∗ u(t), (4.56)
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where ∗ denotes the convolution operator. Consider the impulse response Wij(t) (or equiva-

lently Vij(t)). By assumption, Wij(z) ∈ RP , which implies that Wij(t) = 0 for t < 0 (if we

assume that Wij(z) is also strictly proper, then we could also say that Wij = 0, as was done

in [12, 20]; however, here, we consider the more general case). Also by assumption, we have

assumed that there exists a finite r such that Wij(t) ≈ 0 for t > m(r + 1) + 1. Thus, we can

approximate every Wij(t) and every Vij(t) with a finite impulse response (FIR) with support

in the range t = 0, . . . , r.
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Given these assumptions, observe that

y(0) =

[
W (0) V (0)

]y(0)

u(0)



y(1) =

[
W (1) W (0) V (1) V (0)

]


y(0)

y(1)

u(0)

u(1)


...

y(r) =

[
W (r) · · · W (0) V (r) · · · V (0)

]



y(0)

...

y(r)

u(0)

...

u(r)



y(r + 1) =

[
W (r) · · · W (0) V (r) · · · V (0)

]



y(1)

...

y(r + 1)

u(1)

...

u(r + 1)


...

y(T ) =

[
W (r) · · · W (0) V (r) · · · V (0)

]



y(T − r)
...

y(T )

u(T − r)
...

u(T )


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Thus, we can rewrite (4.56) as the following matrix multiplication (which we call the Toeplitz

representation of the network):

~y(T ) = W̄ (T )~y(T ) + V̄ (T )~u(T ), (4.57)

where W̄ (T ) ∈ Rp2(T+1)×p2(T+1), where V̄ (T ) ∈ Rp2(T+1)×pm(T+1), and where

~y(T ) =

[
y(0)′ y(1)′ · · · y(T )′

]′
, (4.58a)

~u(T ) =

[
u(0)′ u(1)′ · · · u(T )′

]′
, (4.58b)

W̄ (T ) =



W (0) 0 · · · 0 · · · 0

W (1) W (0) · · · 0 · · · 0

...
...

. . .
...

. . .
...

W (r) W (r − 1) · · · W (0) · · · 0

...
...

. . .
...

. . .
...

0 0 · · · W (r) · · · W (0)


, (4.58c)

V̄ (T ) =



V (0) 0 · · · 0 · · · 0

V (1) V (0) · · · 0 · · · 0

...
...

. . .
...

. . .
...

V (r) V (r − 1) · · · V (0) · · · 0

...
...

. . .
...

. . .
...

0 0 · · · V (r) · · · V (0)


. (4.58d)

Rewrite (4.57) as

~y(T ) =

[
W̄ (T ) V̄ (T )

]~y(T )

~u(T )

 . (4.59)
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Take the transpose of both sides to get

~y(T )′ =

[
~y(T )′ ~u(T )′

]W̄ (T )′

V̄ (T )′

 . (4.60)

Expanding, we get

[
y(0)′ · · · y(r)′ · · · y(T )′

]
=

[
y(0)′ · · · y(r)′ · · · y(T )′ u(0)′ · · · u(r)′ · · · u(T )′

]



W (0)′ · · · W (r)′ · · · 0

...
. . .

...
. . .

...

0 · · · W (0)′ · · · W (r)′

...
. . .

...
. . .

...

0 · · · 0 · · · W (0)′

V (0)′ · · · V (r)′ · · · 0

...
. . .

...
. . .

...

0 · · · V (0)′ · · · V (r)′

...
. . .

...
. . .

...

0 · · · 0 · · · V (0)′



Consider the first column of the above equation, defining

y(0)′ = y(0)′W (0)′ + u(0)′V (0)′. (4.61)

Suppose that ~W (t) is the vectorized form of W (t) stacked in row-major order (or W (t)′

stacked in column-major order), and that ~V (t) is likewise the vectorized form of V (t) stacked
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in row-major order. Define Ȳ (t) ∈ Rp×p2
to be

Ȳ (t) =



y(t)′ 0 · · · 0

0 y(t)′ · · · 0

...
...

. . .
...

0 0 · · · y(t)′


. (4.62)

Likewise define Ū(t) ∈ Rp×pm to be

Ū(t) =



u(t)′ 0 · · · 0

0 u(t)′ · · · 0

...
...

. . .
...

0 0 · · · u(t)′


. (4.63)

Then, (4.61) can be rewritten as

y(0) = Ȳ (0) ~W (0) + Ū(0)~V (0)

=

[
Ȳ (0) Ū(0)

] ~W (0)

~V (0)

 . (4.64)

Remark 4.4.4: Since the methodology for the time-domain reconstruction algorithm is

very similar to the methodology for the frequency-domain reconstruction algorithm, we

will reuse much of the same notation for both convenience and to draw parallels between

the two algorithms. However, unless otherwise noted, definitions for some variable in this

section are not equivalent to the definitions of a variable of the same name in Section 4.3.

By utilizing these definitions, we can also rewrite the full (4.60) as

~y(T ) = Lθ, (4.65)
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where L ∈ Rp(T+1)×(p2+pm)(r+1) is

L =



Ȳ (0) Ū(0) 0 0 · · · 0 0

Ȳ (1) Ū(1) Ȳ (0) Ū(0) · · · 0 0

...
...

...
...

. . .
...

...

Ȳ (r) Ū(r) Ȳ (r − 1) Ū(r − 1) · · · Ȳ (0) Ū(0)

...
...

...
...

. . .
...

...

Ȳ (T ) Ū(T ) Ȳ (T − 1) Ū(T − 1) · · · Ȳ (T − r) Ū(T − r)


, (4.66)

and contains only known entries from the inputs and outputs, and where θ ∈ Rr(p2+pm) is

θ′ =

[
~W (0)′ ~V (0)′ ~W (1)′ ~V (1)′ · · · ~W (r)′ ~V (r)′

]
(4.67)

and contains the unknown entries in the impulse responses for W and V .

Notice the similarity of (4.65) to (4.12) in Section 4.3. As we did before, we wish

to solve for θ̂ uniquely; thus, we require L to be full column rank. Moreover, as before, it

is necessary to reduce the dimension of the domain of L. To do so, we utilize the same

identifiability conditions encoded in K that we used before.

Let M ∈ Rp(T+1)×k(r+1) be

M =



[
Ȳ (0) Ū(0)

]
K 0 · · · 0

[
Ȳ (1) Ū(1)

]
K

[
Ȳ (0) Ū(0)

]
K · · · 0

...
...

. . .
...[

Ȳ (r) Ū(r)

]
K

[
Ȳ (r − 1) Ū(r − 1)

]
K · · ·

[
Ȳ (0) Ū(0)

]
K

...
...

. . .
...[

Ȳ (T ) Ū(T )

]
K

[
Ȳ (T − 1) Ū(T − 1)

]
K · · ·

[
Ȳ (T − r) Ū(T − r)

]
K



,

(4.68)
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and let

θ̂′ =

[
(K+)′

[
~W (0)′ ~V (0)′

]
(K+)′

[
~W (1)′ ~V (1)′

]
· · · (K+)′

[
~W (r)′ ~V (r)′

]]
. (4.69)

As before, our problem thus becomes reduced to finding the unique θ̂ such that

~y(T ) = Mθ̂. (4.70)

Note that these identifiability conditions reduce each Wij(t) and Vij(t) (for t = 0, . . . r)

in the same way that W and V were reduced in Section 4.3. For instance, if we know

that W11(z) = 0, then encoding that information using K will ensure that W11(t) = 0 for

all t = 0, . . . r. Likewise, if we know that P12(z) = P11(z) + Q12(z), then K will encode

P12(t) = P11(t) + Q12(t) for all t = 0, . . . , r. Note also that we can recover θ encoding all

parameters in (W,V ) uniquely from θ̂ with

θ =
[
K ⊕ r· · · ⊕K

]
θ̂. (4.71)

The definition of M in (4.68) highlights a necessary condition that we must require of

our data in order to reconstruct our network. We summarize this condition in the following

result:

Lemma 4.4.5: Let L ∈ Rp(T+1)×(p2+pm)(r+1) be defined as in (4.66), let K ∈ Rp2+pm×k

encode the identifiability conditions of this network as defined in Section 4.3, and let M ∈

Rp(T+1)×k(r+1) be computed from L and K as defined in (4.68). Then M is injective only if

T ≥ k
p
(r + 1)− 1 (or, equivalently when k = pm, T ≥ m(r + 1)− 1). ♦

Proof Assume, to the contrary, that T < k
p
(r + 1) − 1. Then there are less than

p
(
k
p
(r + 1)− 1 + 1

)
= k(r + 1) rows in M . Since there are exactly k(r + 1) columns

in M , M cannot be injective since rankM ≤ min (p(T + 1), k(r + 1)) < k(r + 1).
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We can now state the necessary and sufficient conditions onK using the transformation7

in (4.68), which we summarize in the following result (which parallels Theorem 4.3.9):

Theorem 4.4.6: Let u(t) and y(t) for t = 0, . . . , T be the discrete-time and time-domain

input-output data generated from some discrete-time and proper DNF (W (t), V (t)) (with

W (t) having dimensions p×p and V (t) having dimensions p×m). Let L ∈ Rp(T+1)×(p2+pm)(r+1)

be defined as in (4.66), let K ∈ Rp2+pm×k encode the identifiability conditions of this network

as defined in Section 4.3, and let M ∈ Rp(T+1)×k(r+1) be computed from L and K as defined in

(4.68). Then, there is a bijection between (u(t), y(t)) and (W (t), V (t)) (i.e., (W (t), V (t)) can

be reconstructed uniquely from our input-output data) if and only if the following conditions

hold:

1. M is injective (i.e., rankM = k(r + 1))

2. ~y(T ) ∈ R(M), where R(M) is the range of M ♦

Proof Observe that M is the mapping from unidentified model parameters θ̂ (where all

model parameters in θ can be recovered uniquely from θ̂ according to (4.71) to the known

parameters ~y(T ). The two conditions listed above are well-known to ensure that θ̂ is computed

uniquely.

In summary, the time-domain network reconstruction is given in Algorithm 2.

4.4.3 Data Informativity

In the frequency-domain algorithm, we skirted the issue of data informativity by assuming

that the input-output data was rich enough that system identification could recover the

correct transfer function G (e.g., the choice of inputs excited all of the modes of the transfer

7Other and more general transformations reducing the dimension of L (such as post multiplying L by

some arbitrary matrix in R(p2+pm)(r+1)×k(r+1)) will also work; however, they are not meaningful for this
problem since we assume the structure to be time-invariant. Any reduction other than that in (4.68) would
signify that our knowledge of the structure of (W,V ) is different at every time in the impulse responses.
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Algorithm 2 Time Domain Network Reconstruction

1: procedure ReconstructTime(Du, Dy, K, r) . Find (W (t), V (t)) from (u(t), y(t))
given identifiability K assuming that Wij(t) ≈ 0 and Vij(t) ≈ 0 for all t > r

2: T, p← Shape(Du) . The t’th row of Du is u(t) transpose
3: T̂ ,m← Shape(Dy) . The t’th row of Dy is y(t) transpose

4: assert(T = T̂ ) . Inputs and outputs should be defined over same time
5: h, k ← Shape(K)
6: assert(h = p2 + pm)
7: assert(k ≤ pm and rankK = k)
8: ~y(T )←

[
[Dy]0,: [Dy]1,: · · · [Dy]T,:]

′] . [Dy]t,: is the t’t row of Dy

9: for t ∈ {0, . . . , T} do . Order irrelevant
10: M̂(t)← BlUYK(t,Du, Dy, K)
11: end for

12: M ←



M̂(0) 0 · · · 0

M̂(1) M̂(0) · · · 0
...

...
. . .

...

M̂(r) M̂(r − 1) · · · M̂(0)
...

...
. . .

...

M̂(T ) M̂(T − 1) · · · M̂(T − r)


∈ Rp(T+1)×k(r+1)

13: θ̂ ← Pinv(M , ~y(t)) ∈ Rk(r+1)

14: θ ←
[
K ⊕ r· · · ⊕K

]
θ̂ ∈ R(p2+pm)(r+1)

15: for t ∈ [0, . . . , r] do . Order necessary
16: ix ← 0
17: for i ∈ [1, . . . , p] do . Order necessary
18: for j ∈ [1, . . . , p] do . Order necessary
19: Wij(t)← θix
20: ix ← l + 1
21: end for
22: for j ∈ [1, . . . ,m] do . Order necessary
23: Vij(t)← θix
24: ix ← l + 1
25: end for
26: end for
27: end for

28: W (t)←

W11(t) · · · W1p(t)
...

. . .
...

Wp1(t) · · · Wpp(t)

 ∈ Rp×p×r+1

29: V (t)←

V11(t) · · · V1m(t)
...

. . .
...

Vp1(t) · · · Vpm(t)

 ∈ Rp×m×r+1

30: return W (t), V (t) . Return the reconstructed DNF
31: end procedure . See Algorithm 3 for helper procedures
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Algorithm 3 Helpers for Algorithm 2

1: procedure Pinv(M, y) . Get the unique x such best fits y = Mx with the 2-norm
2: m,n← Shape(()M)
3: assert(rankM = n) . We require M to be injective
4: if m = n then x = M−1y
5: elsex = (M ′M)−1M ′y
6: end if
7: return x
8: end procedure
9: procedure BlUYK(t,Du, Dy, K) . Build the block [ Ȳ (t) Ū(t) ]K

10: u(t)← [Du]
′
t,: . t’th row of Du, transposed

11: y(t)← [Dy]
′
t,: . t’th row of Dy, transposed

12: Ȳ (t)←


y(t)′ 0 · · · 0

0 y(t)′ · · · 0
...

...
. . .

...
0 0 · · · y(t)′

 ∈ Rp×p2

13: Ū(t)←


u(t)′ 0 · · · 0

0 u(t)′ · · · 0
...

...
. . .

...
0 0 · · · u(t)′

 ∈ Rp×pm

14: return [ Ȳ (t) Ū(t) ]K ∈ Rp×k

15: end procedure
16: procedure Shape(M) . M ∈ Fm×n for any field F
17: return m,n . Rows, Cols in M
18: end procedure
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function). In the time-domain algorithm, however, we cannot avoid the issue in the same

manner since we utilize the input-output data directly.

The key to understanding data informativity lies in Theorem 4.4.6, which states that

the necessary and sufficient conditions for reconstruction is that M (4.68) is injective. In

particular, consider the extreme case where u(t) = 0 for t = 0, . . . , T . Then, since we have

assumed zero initial conditions, we have that y(t) = 0 as well. Thus, M = 0 is not injective,

and we have failed to meet the necessary and sufficient conditions for reconstruction.

Unfortunately, it is difficult to separate necessary and sufficient conditions on informa-

tivity from those listed in Theorem 4.4.6. However, the following result provides necessary

conditions on data informativity for a common subclass of problems knowledge of V is

independent of knowledge of W and every column of V has at least one unknown entry

(target specificity meets these requirements).

Theorem 4.4.7 (Data Informativity): Let D̂u = [u(0) u(1) · · · u(T − r)]′ ∈ RT−r+1×m.

Suppose that K ∈ Rp2+pm×k is defined such thatk ≤ pm and rankK = k. Suppose that no

entry in V is known to be a function of any entry in W , and suppose that there is at least

one unknown entry in each of the m columns of V . Then M is injective only if rankDu = m

(i.e., if Du is injective). ♦

Proof Let k̂ ≤ k be the number of unknown entries in V and K̃ = k − k̂ be the number of

unknown entries in W . Let

K =

KWW KWV

KVW KV V

 , (4.72)

where KWV ∈ Rp2×k̂ defines the entries in W that are known to be functions of other entries

in V and KVW ∈ Rpm×k̃ defines the entries in V that are known to be functions of other

entries in W . By assumption, no entry in V is known to be a function of any entry in W ,

thus KVW = 0. This implies that, with KV V ∈ Rpm×k̂ and since K is now block triangular,

we have rankKV V = k̂ ≥ m.
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Consider

Lu =



Ū(0) 0 · · · 0

Ū(1) Ū(0) · · · 0

...
...

. . .
...

Ū(r) Ū(r − 1) · · · Ū(0)

...
...

. . .
...

Ū(T ) Ū(T − 1) · · · Ū(T − r)


∈ Rp(T+1)×pm(r+1). (4.73)

and

Mu =



Ū(0)KV V 0 · · · 0

Ū(1)KV V Ū(0)KV V · · · 0

...
...

. . .
...

Ū(r)KV V Ū(r − 1)KV V · · · Ū(0)KV V

...
...

. . .
...

Ū(T )KV V Ū(T − 1)KV V · · · Ū(T − r)KV V


∈ Rp(T+1)×k̂(r+1). (4.74)

Notice that, since K is upper block triangular, the columns in Mu are also present in M .

Thus, if Mu is not full column rank, M cannot be injective.

Let

Ci,j(Ū) =



Ū(i)

Ū(i+ 1)

...

Ū(j)


, (4.75)
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which allows us to rewrite

Lu =



C0,T−r(Ū) 0 · · · 0

CT−r+1,2(T−r)(Ū) C0,T−r(Ū) · · · 0

...
...

. . .
...

Cr,T (Ū) Cr−1,T−1(Ū) · · · C0,T−r(Ū)


, (4.76)

and since Lu is lower block triangular with r copies of C0,T−R on the diagonal, we have that

rankLu = r rank C0,T−R.

Observe that, by definition, and where [Du]t is defined by the t’th row of Du, we have

C0,T−r(Ū) =



[Du]0 · · · 0

...
. . .

...

0 · · · [Du]0

[Du]1 · · · 0

...
. . .

...

0 · · · [Du]1
...

. . .
...

[Du]T−r · · · 0

...
. . .

...

0 · · · [Du]T−r



, (4.77)

hence we can permute the rows of C0,T−r to get Du⊕
p· · · ⊕Du. Thus, rank C0,T−r = p rankDu

and rankLu = r rank C0,T−R = rp rankDu.

Since KV V encodes that we do not know any information about at least one entry in

each column of V , there exists, for i = 1, . . . ,m, a row in KV V with a one in column i and

zeros everywhere else. Thus the product C0,T−r(Ū)KV V contains duplicates of the columns of

C0,T−r(Ū) corresponding to these rows in KV V . And by definition of C0,T−r(Ū), this implies

that every column of Du, padded with zeros, appears at least once in C0,T−r(Ū)KV V . Thus, a
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necessary condition for C0,T−r(Ū)KV V to be full column rank is for Du to also be full column

rank.

Observe also that

Mu =



C0,T−r(Ū)KV V 0 · · · 0

CT−r+1,2(T−r)(Ū)KV V C0,T−r(Ū)KV V · · · 0

...
...

. . .
...

Cr,T (Ū)KV V Cr−1,T−1(Ū)KV V · · · C0,T−r(Ū)KV V


. (4.78)

Since Mu is lower block triangular with C0,T−r(Ū)KV V repeated on the diagonals, Mu is

injective only if C0,T−r(Ū)KV V is injective only if Du is injective.

While there are many sets of inputs to satisfy these necessary data informativity

requirements, the next provides a simple method of constructing such data.

Corollary 4.4.8: Let ui(t) ∼ N (0, σ) for i = 1, . . . T − r, t = 0, . . . T , and some σ > 0,

where N (µ, σ) is the normal distribution with mean µ and standard deviation σ. Then

Du = [u(0) u(1) · · · u(T − r)]′ ∈ RT−r+1×m is injective with probability one. ♦

Proof Follows immediately from the fact that non-injective matrices are sparse in the set

of matrices with more rows than columns.

Corollary 4.4.8 is especially important in the passive reconstruction (see Remark 4.4.1) setting

where inputs are observed but not controlled. If we can assume that the uncontrolled inputs

are white noise, then we meet the necessary data informativity conditions.

4.4.4 Advantages Compared to the Frequency-Domain Algorithm

We have already described the main disadvantage of the time-domain algorithm (namely

that it solves a restricted subclass of a problem which has already been solved using the
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frequency-domain algorithm); however, it still exhibits many advantages over the frequency-

domain algorithm which make it ideal in many circumstances. Some of these advantages are

as follows:

• Computational Complexity: The frequency-domain algorithm requires the inversion

and simplification of a symbolic matrix. The complexity of such an inversion is difficult

to analyze. The time-domain algorithm instead requires the inversion of a real-valued

matrix. While this real-valued matrix is much larger than the equivalent symbolic

matrix, bounds on the complexity are easily obtained8. We suspect that the time-

domain algorithm will be much more scalable than the frequency-domain algorithm as

m and p grow large, so long as r remains bounded.

• Analysis of Uncertainty and Noise: While we do not touch on noise and uncertainty

in this work since the time-domain algorithm utilizes the projection theorem over real-

valued matrices, well-established theory in linear regression can be leveraged to analyze

and improve the performance of the algorithm under uncertainty and noise. For instance,

the Fisher Information Matrix can be leveraged to identify how large T should be to

reduce error below some desired threshold. Alternative linear regression techniques,

such as lasso regression (see [12] for the use of lasso regression in time-domain network

reconstruction) and total least squares can be used to improve performance given certain

uncertainty models.

• Data: For many network reconstruction problems (such as the reconstruction of

financial networks), the data received is discrete time and in the time domain. This

algorithm is designed to work with such data directly, making analysis and use of that

data convenient.

8Let y = Mx where M ∈ Ra×b (a > b) and y ∈ Ra are known and x ∈ Rb is unknown. To find
x∗ = arg minx ‖y −Mx‖2 (i.e., to solve the least squares problem) using a standard implementation, one
must perform the following steps: (1) Compute M ′M ∈ Ra×a, which takes O(ab2) time. (2) Invert M ′M ,
which takes O(b3) time. (3) Compute M ′y, which takes O(ab) time. And (4) compute x∗ = [(M ′M)−1][M ′y],
which takes O(b3) time. Thus, the time complexity is O(ab2 + ab + 2b3) = O(ab2) since a > b. For our
particular implementation, we have that M ∈ Rp(T+1)×pm(r+1); hence the time complexity is given by
O
(
(pm(r + 1))2(p(T + 1))

)
= O

(
p3m3T 3

)
since T ≥ m(r + 1).
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• Real-Time Reconstruction (Moving Horizon Estimation): Both algorithms as

presented in this work require that the network is reconstructed from scratch whenever

new data is received. However, in the time-domain algorithm, if we replace the least

squares algorithm with recursive least squares, we can update the network model live

as new data is streamed in. To date, no research has been done in this area.

• Connections to Model-Predictive Control: Model-predictive control leverages a

model of some system and chooses inputs over some time horizon to optimize some

objective. At every time-step, this process is repeated to refine the choice of inputs.

If we have a network in the form (4.57) (such as one found through the time-domain

network reconstruction algorithm), the choice of ~u(T ) over some time horizon 0, . . . , T

can be formulated as a linear programming problem (if the objective is linear) or

a quadratic programming problem (if the objective is quadratic), thus solving the

model-predictive control problem with a convex algorithm.

Since we have a structured model, linear constraints can potentially be added to the

linear (quadratic) programming problem leveraging the structure of the network to

meet additional robustness requirements. Furthermore, the moving horizon estimation

methodology discussed above can be used to update the network model in real time.

The combination of moving-horizon estimation with model-predictive control is known

as adaptive control, and these combined techniques may provide a linear solution to

the adaptive control problem which may be easier to analyze than existing techniques.

No research has yet been done in this area. It should also be noted that the time-domain

reconstruction algorithm must be generalized to allow for non-zero initial conditions to

be useful for these problems.

• Blind Reconstruction: In [12, 18, 89], the blind reconstruction problem was in-

troduced as a network reconstruction problem where the inputs into the system are

not observed but are instead drawn from some known distribution. Since inputs are
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not observed, we cannot build a transfer function from input to output; thus, the

frequency-domain algorithm cannot be used to solve this problem. However, the time

domain algorithm can be modified to leverage knowledge about the input distributions

as a way of solving this problem. To date, we still consider the blind reconstruction

problem to be an open problem requiring additional research.

4.4.5 Numeric Examples

We now demonstrate the time-domain reconstruction algorithm with several examples. The

matrices and equations required to adequately describe each step of these examples are

significantly larger than those in Section 4.3.4 and do not fit in print format. As such, we

rely on figures to demonstrate intermediate steps and successful reconstruction.

Example 4.4.9: A Strictly Proper Network

We reproduce the example that was first presented in [20] to demonstrate that this

algorithm–which was generalized to reconstruct proper networks–still functions when

attempting to reconstruct a strictly proper network.

Suppose that we begin with the (unknown) state space model

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k],
(4.79)
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where

A =



3
4

0 0 0 0 6
5

− 1
10
− 7

20
0 0 0 0

0 0 17
20
−1 0 0

0 − 73
100

0 19
20

0 0

0 0 43
100

0 −3
5

0

0 0 0 0 1
5

11
20


, B =



7
5

0 −7
5

0 −1
4

0

0 0 3
4

0 0 0

0 0 0

0 0 0


,

C =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 .

(4.80)

Following the procedure in Section 2.4.1 to convert a state space model to a DSF, we get

the (unknown) DSF representation (Q,P ) of our model, where

Q =


0 0 1032

25(4z−3)(5z+3)(20z−11)

− 2
20z+7

0 0

0 292
(20z−19)(20z−17)

0

 , and

P =


28

5(4z−3)
0 − 28

5(4z−3)

0 − 5
20z+7

0

0 0 15
20z−17

 .
(4.81)

Following the procedure found in [12, 20], we can find the impulse responses for every

entry in Q and P . These impulse responses are plotted as the blue dashed line in Figures

4.2 and 4.3.
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Assume that we know that P13 = P11. We encode this knowledge with

K =



0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1



(Q11 = 0)

(Q12 =?)

(Q13 =?)

(Q21 =?)

(Q22 = 0)

(Q23 =?)

(Q31 =?)

(Q32 =?)

(Q33 = 0)

(P11 =?)

(P12 = 0)

(P13 = −P11)

(P21 = 0)

(P22 =?)

(P23 = 0)

(P31 = 0)

(P32 = 0)

(P33 =?)

(4.82)

Choose r = 200. Also let T = 3(r + 1) = 603 to satisfy Lemma 4.4.5. Note that we

‘cheated’ in this choice of r since we know, from Figures 4.2 and 4.3 that every impulse

response converges to approximately zero by t = 200. However, as demonstrated in [12],

the quality of results converge to optimal as r increases, so long as T is sufficiently larger

than r (T ≥ 3(r + 1) − 1 should be sufficiently large). Thus, one procedure to find r

could be to start small and increase until the reconstruction results converge to a single

answer.
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Since there is exactly one unknown entry in each column of P , and since K ∈

Rp2+pm×k with k = pm = 9 and with rankK = k, we satisfy the assumptions in

Theorem 4.4.7. Thus choosing u(t) such that Du is injective is a necessary condition for

reconstruction. As such and as suggested by Corollary 4.4.8, we let u(t) be white noise

with σ = 1. We then use (4.80) to generate our output data y(t), giving the input-output

data shown in Figure 4.1.

Figure 4.1 The input-output data generated from the system (4.80).

With K, u(t), and y(t), we can create M defined in (4.68). A quick check verifies

that M is full column rank, thus meeting the necessary and sufficient conditions for

reconstruction in Theorem 4.4.6. With this injective M , we can solve for θ̂ and θ uniquely.

Then, extracting our impulse responses from θ, we get the reconstructed impulse responses

that are shown with orange dots in Figures 4.2 and 4.3. Notice that the reconstructed

impulse responses fit the actual impulse responses exactly; thus, we have successfully

reconstructed our network.
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Figure 4.2 The reconstructed (orange dots) and actual (blue dashed line) impulse
responses of the network given by (4.81).
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Figure 4.3 The reconstructed (orange dots) and actual (blue dashed line) impulse
responses of the network given by (4.81).

Example 4.4.10: A Proper Network

We now demonstrate that the time-domain network reconstruction algorithm is capable

of reconstructing proper (and not necessarily strictly proper) networks. To do so, set the

system be defined by the (unknown) generalized state space model

x[k + 1] = Ax[k] + Ây[k] + Bu[k],

y[k] = Āx[k] + Ãw[k] + B̄u[k],
(4.83)
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where

A =



3
4 0 0 0 0 6

5

− 1
10 − 7

20 0 0 0 0

0 0 17
20 −1 0 0

0 − 73
100 0 19

20 0 0

0 0 43
100 0 −3

5 0

0 0 0 0 1
5

11
20


Â =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0


B =



7
5 0 0

0 −1
4 0

0 0 3
4

0 0 0

0 0 0

0 0 0


,

Ā =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 Ã =


4 1 1

0 3 0

0 1 2

 B̄ =


0 0 0

0 0 0

0 0 0

 .

(4.84)

Following the procedure in Section 2.4.2 to convert a generalized state space model to a

DNF and then the procedure in Section 3.4 to find the hollow abstraction (DSF) of this

DNF, we get the (unknown) DSF representation (Q,P ) of our model, where

Q =


0 −10000z3−7000z2−3675z+1443

75(4z−3)(5z+3)(20z−11)
−10000z3−7000z2−3675z+1443

75(4z−3)(5z+3)(20z−11)

− 3
4(5z+2)

0 − 1
4(5z+2)

0 − 400z2−720z−261
(20z−19)(20z−17)

0

 , and

P =


− 28

15(4z−3)
0 0

0 5
8(5z+2)

0

0 0 − 15
20z−17

 .
(4.85)

Observe that

(I − Ã) =


−3 −1 −1

0 −2 0

0 −1 −1

 . (4.86)
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and

(I −Q(∞)) = (I − diag Ã)−1(Ã− diag Ã) =


1 1

3
1
3

0 1 0

0 1 1

 (4.87)

are both non-singular. Thus, by Theorem 2.5.8, our network is well-posed. Note

that we can prove that our network is well-posed in two ways. First, by directly

checking (I − Q(∞)) and using Theorem 2.5.8. Second, by checking that (I − Ã) is

non-singular implying that DNF is well-posed. We then check that our hollow abstraction

is representable (i.e., proper, which fails only when there is a 1 on the diagonal of Ã)

which lets us leverage Theorem 3.4.7 to say that the DSF is also well-posed.

Following the procedure found in [12, 20], we can find the impulse responses for

every entry in Q and P . These impulse responses are plotted as the blue dashed line in

Figures 4.5 and 4.6.
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Assume that we know that P is diagonal (target specificity). We encode this

knowledge with

K =



0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1



(Q11 = 0)

(Q12 =?)

(Q13 =?)

(Q21 =?)

(Q22 = 0)

(Q23 =?)

(Q31 =?)

(Q32 =?)

(Q33 = 0)

(P11 =?)

(P12 = 0)

(P13 = 0)

(P21 = 0)

(P22 =?)

(P23 = 0)

(P31 = 0)

(P32 = 0)

(P33 =?)

(4.88)

Choose r = 200 for the same reasons as the previous example and let T = 2400 ≥

3(r + 1)− 1 to satisfy Lemma 4.4.5.

Since there is exactly one unknown entry in each column of P (as with the previous

example), and since K ∈ Rp2+pm×k with k = pm = 9 and with rankK = k, we satisfy

the assumptions in Theorem 4.4.7. Thus choosing u(t) such that Du is injective is a
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necessary condition for reconstruction. As such and as suggested by Corollary 4.4.8, we

let u(t) be white noise with σ = 1. We then use (4.84) to generate our output data y(t),

giving the input-output data shown in Figure 4.4.

Figure 4.4 The input-output data generated from the system (4.84).

With K, u(t), and y(t), we can create M defined in (4.68). A quick check verifies

that M is full column rank, thus meeting the necessary and sufficient conditions for

reconstruction in Theorem 4.4.6. With this injective M , we can solve for θ̂ and θ uniquely.

Then, extracting our impulse responses from θ, we get the reconstructed impulse responses

that are shown with orange dots in Figures 4.5 and 4.6. Notice that the reconstructed

impulse responses fit the actual impulse responses exactly; thus, we have successfully

reconstructed our network.
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Figure 4.5 The reconstructed (orange dots) and actual (blue dashed line) impulse
responses of the network given by (4.85).
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Figure 4.6 The reconstructed (orange dots) and actual (blue dashed line) impulse
responses of the network given by (4.85).

4.5 Future Work

The following research directions and questions are still open for future research in the

time-domain network reconstruction algorithm9:

• Initial Conditions: Presently, the time-domain algorithm assumes that initial con-

ditions are zero. Future work should relax this constraint. The system identification

literature has long studied non-zero initial conditions and will have insights into solving

this problem (see [90]).

• Rank Conditions on L: A result analogous to Lemma 4.3.2 would strengthen the

necessary conditions for reconstruction using the time-domain algorithm. It would be

9A variation of list was first published in [12]. In this work, we addressed several of the open questions from
that original list, including proofs of identifiability conditions (though this direction can still be strengthened),
exploration of what happens when our identifiability conditions make the wrong assumption (we take an
abstraction as shown in Examples 4.3.15 and 4.3.16), and the reconstruction of proper (and not necessary
strictly proper) networks.
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reasonable that such a result would say that the rank of matrix L in (4.66) should

equal the rank of the portion of L corresponding to the inputs (just as it did in

Lemma 4.3.2). In other words, supposing that T satisfies Lemma 4.4.5, we would

assume that rankL = pm(r + 1). Unfortunately, numerical simulations indicate that

this is, in fact, untrue. They suggest that, in reality, rankL = pm(r + 3).

• Reconstruction Validation: Presently, little work has been done in the study of how

to validate if a reconstructed network is correct when the true network is unknown. If

we can assume that the original a priori assumptions about the structure are correct,

then the reconstructed network will be correct if it is predictive of future data (since it

is unique given the black box transfer function). However, validation of the a priori

assumptions about the structure is undoubtedly impossible unless we can somehow

modify the system. For instance, by injecting measured white noise that perturbs every

output independently, we augment P with an identity matrix. The augmented P has

p2− p entries that are known to be zero, and we meet the necessary identifiability index

for reconstruction (and likely meet the necessary and sufficient conditions as well). We

can then reconstruct the network and validate that the reconstructed network matches

our a priori information.

• Other Regression Techniques: In this work, we focus on least squares as the solution

to our linear regression problems; however, other regression techniques could easily be

used as well with various benefits, such as using the one-norm instead of the two-norm

(which utilizes a linear program in its solution). Such a solution would be robust to

outliers in the data. Several of the next items show use cases for other such alternative

techniques.

• Robust Reconstruction: In this work, we have assumed that all inputs and outputs

in the system are measured perfectly. The robust reconstruction problem, discussed

in [12, 41, 56], assumes that our measurements (and possibly the internal processes

as well) are perturbed by noise, and seeks to recover the structure and dynamics of
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the network still. Of particular interest is the detection of when edges in the network

are zero since reconstructing even a slightly non-zero edge will result in the incorrect

structure of the network. In [12], it was shown that, by replacing the standard least

squares algorithm with a lasso regression, the time-domain reconstruction algorithm

will perform better with larger magnitudes of noise on the inputs and outputs, though it

still only reconstructs an approximation of the actual network. Since such noise affects

not only ~y(T ), but also M , a total least squares methodology may also see success.

Furthermore, by using the Fisher Information matrix, one can specify how large T

should be to reduce error below a desired threshold. Furthermore, this knowledge could

be used to inform thresholds for determining when a non-zero edge should be zero.

• Bounds on Correctness: Given some noisy input-output data and assumptions on

the noise, bounds on the correctness of the network would be desirable. As suggested

above, the Fisher Information matrix may inform this problem.

• Blind Reconstruction: The blind reconstruction problem [12, 18, 89] assumes that

the inputs into the system cannot be measured. Such a problem arises naturally in

many domains (e.g., the stock market, where we measure all the outputs which are the

stock prices, but none of the market inputs). Typically, the problem assumes that the

outputs are all perturbed by independent white noise (i.e., P = I and ui(t) ∼ N (0, σ)

for some σ and all i = 1, . . . p). As such, one way to perform this reconstruction (as

suggested in [12]) is to treat all inputs as if they were measured to be zero, but have some

measurement noise. We then perform a robust reconstruction on the resulting input-

output data to get an approximation of the network. Unfortunately, by Theorem 4.4.7,

this choice of inputs fails to meet the necessary data informativity conditions. Future

work may take advantage of the knowledge of P = I, and possibly knowledge of σ, to

find another technique that does not violate data informativity.
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• Partial Blind Reconstruction: This is a variation of the blind reconstruction problem

where we measure some, but not all, of our inputs. Depending on the nature of the

unmeasured inputs, this may be equivalent to the robust reconstruction problem.

• Reconstruction of Non-FIR Edges: Currently, all edges of the network are required

to be finite impulse responses (which allows the matrices L and M to be finite). Future

work may generalize and allow for more types of impulse responses.

• Reconstruction of Unstable Networks: Currently, we require our network to be

BIBO stable so that the inputs do not become negligibly small with respect to our

outputs. Future work may allow for the reconstruction of unstable networks, perhaps

by building a controller that chooses u(t) to stabilize the network (so long as the input

data generated satisfies Theorem 4.4.7).

• Moving Horizon Reconstruction: Presently, the reconstruction process must be

reinitialized from scratch whenever new data is received. By leveraging recursive least

squares, the algorithm could be generalized such that it updates an existing model with

new data. Thus the model can be refined in real time as new data is streamed in.

• Model Predictive Control: This is not related directly to network reconstruction;

however, given the DSF in the form (4.57), choosing u(t) optimally over some time

horizon such that y(t) follows a desired trajectory becomes a linear program. Moreover,

a demonstration of the effectiveness of this technique compared to existing model

predictive control techniques would be useful to the community, especially if it can

be shown that knowledge of the DSF structure can allow the engineer to design the

controller to be robust in ways unavailable to black-box models.

• Adaptive Control: Once the moving horizon reconstruction and the model predictive

control work is done, then they can be combined to solve the adaptive control problem.

The combined solution would involve feedback between a recursive least squares problem

and a linear program. Since both are linear, proofs on stability may be readily obtainable.

181



www.manaraa.com

• Linear Reconstruction of a Non-linear System: Suppose we use the time-domain

reconstruction algorithm to reconstruct a model of data that was generated from a

non-linear system (such as neural activity in a brain). Does the reconstructed model

have meaning with respect to the true system?
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Chapter 5

Conclusions

In conclusion, we have established a foundation for the theory of proper linear

dynamic networks as represented by the dynamical structure function (DSF). We introduced

the dynamical network function (DNF) as a generalization of the DSF and have provided

well-posedness results over the DNF. We also demonstrated that the set of state space models

is not rich enough to generate the full set of DNFs; they can only generate the restricted

set where W is strictly proper. However, we showed that the interconnection of many state

space models, as represented by a generalized state space model, is rich enough to represent

the full set of DNFs. We also demonstrated the connection between the well-posedness of

generalized state space models and the well-posedness of DNFs.

We then discussed the notions of abstractions of dynamic networks, which are them-

selves dynamic networks preserving specific desired properties from the original network but

containing less structural information. As such, abstractions are cheaper to reconstruct from

data than the original network. We presented four different types of abstractions. The first,

the node abstraction, occurs when we no longer model (or measure) specific outputs in the

network. The abstraction preserves the input-output behavior of the network and introduces

direct edges between measured variables that were once indirect paths passing through the

now-hidden variables. The second abstraction is the edge abstraction which seeks to force

certain edges to zero while preserving the remaining topology of the network. We discuss one

such edge abstraction called the hollow abstraction, which forces all diagonal entries of W to

be zero, thus converting a DNF into a DSF.
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The third abstraction we discuss is called an immersion. We show that the immersion

is a composition of a node abstraction and an edge abstraction. Thus the immersion of

a DSF is a DSF, and the immersion is the node abstraction of a DSF that also results in

a DSF. The final abstraction is called the stacked immersion and was designed such that,

unlike the node abstraction and the immersion, the number of measured outputs does not

decrease. With this construct, we were able to show that there exists a DSF containing as

much structural information as a state space model, that there exists a stacked immersion of

this DSF containing as little structural information as a transfer function, and that all other

stacked immersions lie on a spectrum defined by structural information and lying between

these two endpoints.

For every abstraction, we introduce the notion of representability. We always assume

that the base network is a proper (and not necessarily strictly proper) network. However, the

abstraction may not be proper, and so we provide conditions under which the abstraction

is proper (which we call representability conditions). We show that the definition of repre-

sentability is very similar to the definition of well-posedness. We then show that assuming

the abstraction is representable (proper), the abstraction is well-posed if and only if the base

network is well-posed.

Finally, we discuss the network reconstruction problem. In this problem, we begin

either with input-output data or an input-output map (the transfer function) and seek to

recover the unique structured model at some desired level of abstraction given that data.

We show that this problem is impossible to solve without some a priori knowledge about

the structure of our model and that the a priori information we choose selects a particular

abstraction. We present two algorithms to solve the network reconstruction problem, one

operating in the frequency domain and the other in the time domain. While these algorithms

were known and published before this work, the main contribution here is to generalize these

algorithms to reconstruct proper (as opposed to strictly proper) DNFs (as opposed to DSFs).
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Appendix A

Source Code

The pyrics library is intended to become a comprehensive Python library for the

representation, identification, and control of dynamic systems. It began its life as a part of

this dissertation in order to provide a framework to perform the network reconstruction in

Chapter 4. Every example within that chapter was produced using this framework using the

Jupyter notebooks included below.

The framework also includes code for converting state space models and generalized

state space models into DSFs (Chapter 2). It can check the well-posedness of those DSFs (also

Chapter 2) and find immersions of those networks given some set S (Chapter 3). Presently,

it does not support DNFs directly (though it will indirectly as shown with Example 4.3.15),

nor does it support the remaining abstractions outlined in Chapter 3.

This code is available as at https://gitlab.com/idealabs/pyrics. The code in-

cluded below was taken from the version 1.0 release of ‘pyrics‘ (https://gitlab.com/

idealabs/pyrics/commit/7c8f7a9d3b352aee89fe34b88f7bae5f467f8a69).

A.1 Jupyter Notebooks for Examples

Here, we include the Jupyter notebooks (running a Python 3 kernel; outputs suppressed)

that were used to generate the examples in Chapter 4.
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Example 4.3.12 - A Target-Specific, Proper, and Ill-Posed DSF

This example is, perhaps, the simplest example of reconstruction. Reconstruction of target-specific
strictly proper DSFs have long been demonstrated; however, the algorithm was always capable of
reconstructing proper networks as well, even if they are ill-posed (see Chapter 2 for definitions of
well-posed and ill-posed networks). We demonstrate that here.

In [ ]: import numpy as np
from pyrics.Representations import DTDSF, DTTF
from pyrics.Algorithms import frequencyReconstruct as reconstruct
from sympy.abc import z
from sympy.matrices import Matrix

Step 1

Build the baseline DSF. Our final answer should equal the DSF shown here.
Note that this network is ill-posed.

In [ ]: Q = DTTF([
[0, (z + 2) / (z + 1), 0],
[0, 0, (z + 3) /(z + 4)],
[(z + 1) * (z + 5) /(z ** 2 + 5*z + 6), 1 / (z ** 2 + 2), 0]

])
P = DTTF([

[(z + 4)/(z + 1), 0, 0],
[0, 1/(z ** 2 + 2), 0],
[0, 0, (z + 6)/(z + 3)]

])

F = DTDSF(Q, P)
F.display()
print('Is Well-Posed? {}'.format(F.is_wellposed()))

Step 2

Convert the DSF into a transfer function. This is what we are given (along with the necessary and
sufficient identifiability conditions) in the reconstruction process.

Note that this transfer function is improper, which is an artifact of using an ill-posed network.

In [ ]: G = F.to_TF()
G.display()
print(G.latex())

Step 3

Reconstruct the DSF from the transfer function. We are assuming target specificity (P is diagonal),
which is the default parameters into the reconstruct function.

Note that the DSF found here is the same as that we started with, indicating that the recon-
struction process works as intended.
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In [ ]: # Fr = G.reconstruct()
Q, P = reconstruct(G.G)
Fr = DTDSF(DTTF(Q), DTTF(P))
Fr.display()

Appendix

We now print out some intermediate steps in computation.

In [ ]: DTTF(reconstruct.K).display(name='K')
print(DTTF(reconstruct.K).latex(name='K'))

In [ ]: DTTF(reconstruct.L).display(name='L')
print(DTTF(reconstruct.L).latex(name='L'))

In [ ]: DTTF(reconstruct.M).display(name='M')
print(DTTF(reconstruct.M).latex(name='M'))

In [ ]: DTTF(reconstruct.gvec).display(name=r'\vec{g}')
print(DTTF(reconstruct.gvec).latex(name=r'\vec{g}'))

In [ ]: DTTF(reconstruct.thetahat).display(name=r'\hat{\theta}')
print(DTTF(reconstruct.thetahat).latex(name=r'\hat{\theta}'))

In [ ]: DTTF(reconstruct.theta).display(name=r'\theta')
print(DTTF(reconstruct.theta).latex(name=r'\theta'))

In [ ]: # For testing only, show a immersion
F.immerse([0,1]).display()

187



www.manaraa.com

Example 4.3.13 - Exceeding the Identifiability Index

In this example, we will demonstrate the reconstruction of a DSF when m > p and where we have
more structural information than necessary to reconstruct.

In [ ]: import numpy as np
from pyrics.Representations import DTDSF, DTTF
from pyrics.Algorithms import frequencyReconstruct as reconstruct
from sympy.abc import z
from sympy.matrices import Matrix

Step 1

Build the baseline DSF. Our final answer should equal the DSF shown here.

In [ ]: Q = DTTF([
[0, 1/(z+1)],
[1/(z+2), 0]

])
P = DTTF([

[1/(z+3),0,0],
[1/(z+3) + 1/(z+4), 1/(z+4),1/(z+5)]

])

F = DTDSF(Q, P)
F.display()
print('Is Well-Posed? {}'.format(F.is_wellposed()))

Step 2

Encode the Identifiability Conditions.

In [ ]: K = np.array([
[0, 0, 0, 0, 0], # Q11 = 0
[1, 0, 0, 0, 0], # Q12 = ?1
[0, 1, 0, 0, 0], # Q21 = ?2
[0, 0, 0, 0, 0], # Q22 = 0
[0, 0, 1, 0, 0], # P11 = ?3
[0, 0, 0, 0, 0], # P12 = 0
[0, 0, 0, 0, 0], # P13 = 0
[0, 0, 1, 1, 0], # P21 = P11 + P22
[0, 0, 0, 1, 0], # P22 = ?4
[0, 0, 0, 0, 1], # P23 = ?5

])
print(DTTF(K).latex())

Step 3

Convert the DSF into a transfer function. This is what we are given (along with identifiability
conditions) in the reconstruction process.
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In [ ]: G = F.to_TF()
G.display()
print(G.latex())

Step 4

Reconstruct the DSF from the transfer function. We are assuming target specificity (P is diagonal),
which is the default parameters into the reconstruct function.

Note that the DSF found here is the same as that we started with, indicating that the recon-
struction process works as intended.

In [ ]: # Fr = G.reconstruct()
Q, P = reconstruct(G.G, K=K)
Fr = DTDSF(DTTF(Q), DTTF(P))
Fr.display()

Appendix

Print out intermediate computations.

In [ ]: DTTF(reconstruct.K).display(name='K')
print(DTTF(reconstruct.K).latex())

In [ ]: DTTF(reconstruct.L).display(name='L')
print(DTTF(reconstruct.L).latex(name='L'))

In [ ]: DTTF(reconstruct.M).display(name='M')
print(DTTF(reconstruct.M).latex(name='M')))

In [ ]: DTTF(reconstruct.gvec).display(name=r'\vec{g}')
print(DTTF(reconstruct.gvec).latex(name=r'\vec{g}'))

In [ ]: DTTF(reconstruct.thetahat).display(name=r'\hat{\theta}')
print(DTTF(reconstruct.thetahat).latex())

In [ ]: DTTF(reconstruct.theta).display(name=r'\theta')
print(DTTF(reconstruct.theta).latex())
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Example 4.3.14 - A DNF from a General Field

In this example, we demonstrate the reconstruction of a DNF (instead of a DSF) where elements
of the DNF are functions of some z > 0 ∈ R (instead of rational functions of z ∈ C).

In [ ]: from sympy.matrices import Matrix, eye
from sympy.abc import z
from sympy import sin, cos, log, simplify, latex
from pyrics.Algorithms import frequencyReconstruct
from pyrics.utilities import pprint
import numpy as np

Step 1

Build the baseline DSF. Our final answer should equal the DSF shown here.

In [ ]: Q = Matrix([
[sin(z), log(z) / z],
[0, sin(z) - log(z) / z]

])
P = Matrix([

[z ** 2 + 2 * z + 3, z],
[sin(z), z]

])
pprint(Q)
pprint(P)

Step 2

Convert the DSF into a transfer function. This is what we are given (along with the identifiability
conditions) in the reconstruction process.

In [ ]: G = simplify((eye(2) - Q).inv() * P)
print(latex(G))
pprint(G)

Step 3

Encode the identifiability conditions. We know that Q11 = 0, Q22 = Q11 − Q12, P21 = Q11, and
P22 = P12.

In [ ]: K = np.array([
[1, 0, 0, 0], # Q11 = ?1
[0, 1, 0, 0], # Q12 = ?2
[0, 0, 0, 0], # Q21 = 0
[1, -1, 0, 0], # Q22 = Q11 - Q12
[0, 0, 1, 0], # P11 = ?3
[0, 0, 0, 1], # P12 = ?4
[1, 0, 0, 0], # P21 = Q11
[0, 0, 0, 1], # P22 = P12

])
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Step 4

Reconstruct the network. We should get what we began with.

In [ ]: W, V = frequencyReconstruct(G, K=K)
pprint(simplify(W))
pprint(simplify(V))

Appendix

Display intermediate computations.

In [ ]: gvec = simplify(frequencyReconstruct.gvec)
pprint(gvec)
print(latex(gvec))

In [ ]: M = simplify(frequencyReconstruct.M)
pprint(M)
print(latex(M))

In [ ]: thetahat = simplify(frequencyReconstruct.thetahat)
pprint(thetahat)
print(latex(thetahat))

In [ ]: theta = simplify(frequencyReconstruct.theta)
pprint(theta)
print(latex(theta))
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Example 4.3.15 - Reconstructing an Immersion

Reconstruction of an immersion of a network.

In [ ]: import numpy as np
from pyrics.Representations import DTDSF, DTTF
from sympy.abc import z
from sympy.matrices import Matrix
from pyrics.Algorithms import frequencyReconstruct as reconstruct

Step 1

Build the baseline DSF. This will remain unknown.

In [ ]: Q = DTTF([
[0, 1 / (z + 1), 0],
[0, 0, 1/(z + 2)],
[1 / (z + 3), 1 / (z + 4), 0]

])
P = DTTF([

[1/(z + 5), 0, 0],
[0, 1/(z + 6), 0],
[0, 0, 1/(z + 7)]

])

F = DTDSF(Q, P)
F.display()
print(F.Q.latex())
print(F.P.latex())

Step 2

Compute our (unknown) immersion with S = {1, 2} (or [0, 1] in the Python zero-indexing) and
S̄ = 3. Our final answer should equal this.

In [ ]: FS = F.immerse([0, 1])
FS.display()

Step 3

Compute the transfer function of the immersion, which we know and use to reconstruct.

In [ ]: G = F.to_TF()
G.display()
print(G.latex())
GS = FS.to_TF()
GS.display()
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Step 4

Define the identifiability conditions.

In [ ]: K = np.array([
[0, 0, 0, 0, 0, 0], # Q11 = 0
[1, 0, 0, 0, 0, 0], # Q12 = ?1
[0, 1, 0, 0, 0, 0], # Q21 = ?2
[0, 0, 0, 0, 0, 0], # Q22 = 0
[0, 0, 1, 0, 0, 0], # P11 = ?3
[0, 0, 0, 0, 0, 0], # P12 = 0
[0, 0, 0, 1, 0, 0], # P13 = ?4
[0, 0, 0, 0, 0, 0], # P21 = 0
[0, 0, 0, 0, 1, 0], # P22 = ?5
[0, 0, 0, 0, 0, 1], # P23 = ?6

])
print(DTTF(K).latex())

Step 5

Reconstruct the network. Note that we get the right answer.

In [ ]: Q, P = reconstruct(GS.G, K=K)
Fr = DTDSF(DTTF(Q), DTTF(P))
Fr.display()
print(Fr.Q.latex(name='Q_S'))
print(Fr.P.latex(name='P_S'))

Appendix

Print intermediate computations.

In [ ]: DTTF(reconstruct.L).display(name='L')
print(DTTF(reconstruct.L).latex(name='L'))

In [ ]: DTTF(reconstruct.gvec).display(name=r'\vec{g}')
print(DTTF(reconstruct.gvec).latex(name=r'\vec{g}'))

In [ ]: DTTF(reconstruct.M).display(name='M')
print(DTTF(reconstruct.M).latex(name='M'))

In [ ]: DTTF(reconstruct.thetahat).display(name=r'\hat{\theta}')
print(DTTF(reconstruct.thetahat).latex(name=r'\hat{\theta}'))

In [ ]: DTTF(reconstruct.theta).display(name=r'\theta')
print(DTTF(reconstruct.theta).latex(name=r'\theta'))
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Example 4.3.16 - Assuming a DSF When Reconstructing a DNF

Demonstration that incorrect assumptions for the necessary and sufficient identifiability condi-
tions results in an abstraction of the true network.

In [ ]: from sympy.matrices import Matrix, eye
from sympy.abc import z
from sympy import sin, cos, log, simplify, latex
from pyrics.Algorithms import frequencyReconstruct
from pyrics.utilities import pprint
from pyrics.Representations import DTTF
import numpy as np

Step 1

Define the DNF. TODO for future, build DNF in pyrics.Representations. For now, we just build it
outside and reconstruct a DSF.

In [ ]: W = DTTF([
[1 / (z + 1), 1 / (z + 2)],
[1 / (z + 3), 1 / (z + 4)]

])
V = DTTF([

[1 / (z + 5), 0],
[0, 1 / (z + 6)]

])
W.display(name='W')
print(W.latex(name='W'))
V.display(name='V')
print(V.latex(name='V'))
print(W.diag().display(name='D_W'))

Step 2

Compute the Hollow Abstraction of the DNF. We will show that the reconstruction that assumes
the identifiability conditions for a DSF returns this answer.

In [ ]: I = DTTF(eye(2))
Q = (I - W.diag()).inv() * (W - W.diag())
P = (I - W.diag()).inv() * V

Q.display(name='Q')
print(Q.latex(name='Q'))
P.display(name='P')
print(P.latex(name='P'))

Step 3

Compute the Transfer Function.

194



www.manaraa.com

In [ ]: G = (I - W).inv() * V
G.display(name='G')
print(G.latex(name='G'))

Step 4

Compute the reconstruction of the DNF. Note that we actually get the hollow abstraction instead.

In [ ]: QS, PS = frequencyReconstruct(G.G)
QS = DTTF(QS)
PS = DTTF(PS)
QS.display(name='Q_S')
print(QS.latex(name='Q_S'))
PS.display(name='P_S')
print(QS.latex(name='P_S'))

Appendix

Print intermediate results

In [ ]: print(DTTF(frequencyReconstruct.L).latex(name='L'))

In [ ]: print(DTTF(frequencyReconstruct.M).latex(name='M'))

In [ ]: print(DTTF(frequencyReconstruct.gvec).latex(name=r'\vec{g}'))

In [ ]: print(DTTF(frequencyReconstruct.thetahat).latex(name=r'\hat{\theta}'))

In [ ]: print(DTTF(frequencyReconstruct.theta).latex(name=r'\theta'))
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Example 4.4.9 - A Strictly Proper Network

We reproduce the example that was first presented in [1] to demonstrate that this algorithm–which
was generalized to reconstruct proper networks–still functions when attempting to reconstruct a
strictly proper network.

[1] V. Chetty, J. Eliason and S. Warnick, "Passive Reconstruction of Non-Target-Specific
Discrete-Time LTI Systems," American Control Conference, Boston, MA, 2016.

In [ ]: import numpy as np
import sympy as sp
from sympy import latex
from pyrics.Representations import DTSS, DTTF, ImpulseDSF
from pyrics.Plot import plotSimulation, plotTimeReconstructionComparison
from IPython.display import display, Math

import plotly
from plotly.offline import iplot as plot
plotly.offline.init_notebook_mode(connected=True)

Step 1

Define constants. We cheat to find r by knowing that all impulse responses have time to converge
before 200 timesteps. We set T = 3(r + 1) > m(r + 1)− 1 since m = 3.

In [ ]: r = 200
T = 3 * (r + 1) # T >= m(r + 1) - 1

Step 2

Define the state space model of our system. We use this model to generate our data.

In [ ]: A = np.array([
[0.75, 0, 0, 0, 0, 1.2],
[-.1, -.35, 0, 0, 0, 0],
[0, 0, 0.85, -1, 0, 0],
[0, -0.73, 0, 0.95, 0, 0],
[0, 0, 0.43, 0, -0.6, 0],
[0, 0, 0, 0, 0.2, 0.55]

])
B = np.array([

[1.4, 0, -1.4],
[0, -0.25, 0],
[0, 0, 0.75],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]

])

C = np.array(
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[
[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0]

]
)
ss = DTSS(A, B, C)
ss.display()
print(ss.is_stable())

Du = np.random.normal(size=(T, 3))
Dy = ss.simulate(Du)
plotSimulation(Du, Dy, plot)

Step 3

Encode the identifiability conditions.

In [ ]: K = np.array([
[0, 0, 0, 0, 0, 0, 0, 0, 0], # Q11 = 0
[1, 0, 0, 0, 0, 0, 0, 0, 0], # Q12 = ?1
[0, 1, 0, 0, 0, 0, 0, 0, 0], # Q13 = ?2
[0, 0, 1, 0, 0, 0, 0, 0, 0], # Q21 = ?3
[0, 0, 0, 0, 0, 0, 0, 0, 0], # Q22 = 0
[0, 0, 0, 1, 0, 0, 0, 0, 0], # Q23 = ?4
[0, 0, 0, 0, 1, 0, 0, 0, 0], # Q31 = ?5plotPassiveComparison
[0, 0, 0, 0, 0, 1, 0, 0, 0], # Q32 = ?6
[0, 0, 0, 0, 0, 0, 0, 0, 0], # Q33 = 0
[0, 0, 0, 0, 0, 0, 1, 0, 0], # P11 = ?7
[0, 0, 0, 0, 0, 0, 0, 0, 0], # P12 = 0
[0, 0, 0, 0, 0, 0, -1, 0, 0], # P13 = -P11
[0, 0, 0, 0, 0, 0, 0, 0, 0], # P21 = 0
[0, 0, 0, 0, 0, 0, 0, 1, 0], # P22 = ?8
[0, 0, 0, 0, 0, 0, 0, 0, 0], # P23 = 0
[0, 0, 0, 0, 0, 0, 0, 0, 0], # P31 = 0
[0, 0, 0, 0, 0, 0, 0, 0, 0], # P32 = 0
[0, 0, 0, 0, 0, 0, 0, 0, 1], # P33 = ?9

])

Step 4

Convert the state space model into our (unknown) DSF. Convert also into convolutional form and
then impulse form so that we have a basis of comparison to see that our reconstructed network is
correct.

In [ ]: QP = ss.to_DSF()
QP.display()
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In [ ]: QPconv = QP.to_convolutional()
QPconv.display()

In [ ]: QPimpulse = QPconv.to_impulse(r=r)
QPimpulse.display()
# QPimpulse.get_plotly(Qplot=plot, Pplot=plot)
pass

Step 5

Reconstruct the network given the input-output data, r, and the identifiability conditions in K.
Optionally convert the reconstructed network back into convolutional form and the frequency
domain (commented out).

In [ ]: RQPimp = ImpulseDSF.reconstruct(Du, Dy, r, K=K, verbose=True, precision=1e-4)
# RQPimp.get_plotly(Qplot=plot, Pplot=plot)
pass

In [ ]: # RQPconv = RQPimp.to_convolutional(verbose=True, njobs=8)
# RQPconv.display()

In [ ]: # RQP = RQPconv.to_DSF()
# RQP.display()

Step 6

Plot results to compare the actual impulse responses with the reconstructed impulse responses.

In [ ]: plotTimeReconstructionComparison(plot, RQPimp, QPconv=None, QPact=QP)
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Example 4.4.10 - A Proper Network

We now demonstrate that the time-domain network reconstruction algorithm is capable of recon-
structing proper (and not necessarily strictly proper) networks.

In [ ]: import numpy as np
import sympy as sp
from sympy import latex
from pyrics.Representations import DTGSS, DTTF, ImpulseDSF
from pyrics.Plot import plotSimulation, plotTimeReconstructionComparison
from IPython.display import display, Math

import plotly
from plotly.offline import iplot as plot
plotly.offline.init_notebook_mode(connected=True)

Step 1

Define constants. We cheat to find r by knowing that all impulse responses have time to converge
before 200 timesteps. We set T = 2400 ≥ m(r + 1)− 1 = 602.

In [ ]: T = 2400
r = 200

Step 2

Define the state space model of our system. We use this model to generate our data.

In [ ]: A = np.array([
[0.75, 0, 0, 0, 0, 1.2],
[-.1, -.35, 0, 0, 0, 0],
[0, 0, 0.85, -1, 0, 0],
[0, -0.73, 0, 0.95, 0, 0],
[0, 0, 0.43, 0, -0.6, 0],
[0, 0, 0, 0, 0.2, 0.55]

])

Ahat = np.zeros((6, 3))

B = np.array([
[1.4, 0, 0],
[0, -0.25, 0],
[0, 0, 0.75],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]

])

Abar = np.array(
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[
[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0]

]
)

Atilde = np.array([
[4, 1, 1],
[0, 3, 0],
[0, 1, 2]

])

Bbar = np.array(
[

[0, 0, 0],
[0, 0, 0],
[0, 0, 0]

]
)
gss = DTGSS(A, Ahat, B, Abar, Atilde, Bbar)
gss.display()
print(gss.is_stable())

Du = np.random.normal(size=(T, 3))
Dy = gss.simulate(Du)
plotSimulation(Du, Dy, plot)

Step 3

Encode the identifiability conditions. Since we can assume target specificity (encoded by default),
we don’t need to do anything here.

Step 4

Convert the state space model into our (unknown) DSF. Convert also into convolutional form and
then impulse form so that we have a basis of comparison to see that our reconstructed network is
correct.

In [ ]: QP = gss.to_DSF()
QP.display()
print(QP.is_wellposed())
print(QP.Q.limit())

In [ ]: QPconv = QP.to_convolutional()
QPconv.display()

In [ ]: QPimpulse = QPconv.to_impulse(r=r)
QPimpulse.display()

200



www.manaraa.com

# QPimpulse.get_plotly(Qplot=plot, Pplot=plot)
pass

Step 5

Reconstruct the network given the input-output data and r. Optionally convert the reconstructed
network back into convolutional form and the frequency domain (commented out).

In [ ]: RQPimp = ImpulseDSF.reconstruct(Du, Dy, r, K=None, verbose=False, precision=1e-4)
# RQPimp.get_plotly(Qplot=plot, Pplot=plot)
pass

In [ ]: # RQPconv = RQPimp.to_convolutional(verbose=True, njobs=8)
# RQPconv.display()

In [ ]: # RQP = RQPconv.to_DSF()
# RQP.display()

Step 6

Plot results to compare the actual impulse responses with the reconstructed impulse responses.

In [ ]: # plotPassiveComparison(plot, RQPimp, RQPconv, QP)
plotTimeReconstructionComparison(plot, RQPimp, QPconv=None, QPact=QP)
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A.2 The pyrics Library

Here, we include the source code for the pyrics library used to run the above notebooks.

Listing 1 pyrics.Algorithms.FrequencyDomainReconstruction

1 #------------------------------------------------------------
2 # pyrics/Algorithms/FrequencyDomainReconstruction.py
3 #
4 # The frequency-domain reconstruction algorithm.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 from sympy import factor
22 from sympy.matrices import Matrix
23
24 from pyrics.Algorithms.Identifiability import checkIdentifiability
25
26 #------------------------------------------------------------
27 def frequencyReconstruct(G, K=None):
28 '''Reconstruct the network (Q, P) generating G.
29
30 Note that G only needs to be a sympy matrix, and note that Q, P will also be
31 sympy matrices.
32

33 Methodology described in [1, 2], following the notation of [2].
34
35 Attributes
36 ----------
37 (these are available at `active_reconstruct.attribute` and can be used to
38 view and access the intermediate computations)
39

40 Munstacked : sympy matrix (p x [p + m])
41 The augmented matrix [G' I].
42 Mstacked : sympy matrix (pm x [p^2 + pm])
43 Munstacked that has been converted into stacked form (after vectorizing)
44 the unknowns in Q and P
45 M : sympy matrix (pm x pm)
46 Mstacked after the identifiability conditions have been applied to reduce
47 the number of columns.
48 y : sympy matrix (pm x 1)
49 The vector containing the known elements from G, stacked.
50 x : sympy matrix (pm x 1)
51 The vector containing the reconstructed elements from Q and P, stacked,
52 where x = M^-1 y.
53
54 Parameters
55 ----------
56 G : sympy matrix (p x m)
57 The 'transfer function'
58 K : np.array (p^2 + pm x pm) or None, default=None
59 The identifiability conditions required to map the TF to the DSF uniquely.
60 If None, assumes that P is diagonal (target specificity); however, an
61 exception is raised in this case if p != m.
62 display_intermediate : bool, default=False
63 If true, prints the intermediate steps, including M (unstacked),
64 M (stacked), y, x, Mhat, and xhat.
65
66 Returns
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67 -------
68 Q : sympy matrix (p x p)
69 P : sympy matrix (p x m)
70
71 Sources
72 -------
73 [1] J. Gonalves and S. Warnick, "Necessary and Sufficient Conditions
74 for Dynamical Structure Reconstruction of LTI Networks," IEEE
75 Transactions on Automatic Control, Aug. 2008.
76 [2] N. Woodbury, "Representation and Reconstruction of Linear, Time-Invariant
77 Networks," Ph.D Dissertation, Brigham Young Univ., Provo, UT, 2019.
78 '''
79 self = frequencyReconstruct
80 p, m = G.shape
81

82 K, _ = checkIdentifiability(K, p, m)
83 _, k = K.shape
84

85 Lunstacked = G.transpose().row_join(Matrix.eye(m))
86 LQ = Matrix.zeros(p * m, p ** 2)
87 GT = G.transpose()
88 for i in range(p):
89 start_row = i * m
90 end_row = (i + 1) * m
91 start_col = i * p
92 end_col = (i + 1) * p
93 LQ[start_row: end_row, start_col: end_col] = GT
94

95 L = LQ.row_join(Matrix.eye(p * m))
96 M = L * K
97

98 gvec = Matrix.zeros((p * m), 1)
99 for i in range(p):

100 start = m * i
101 end = m * (i + 1)
102 gvec[start: end, 0] = G[i, :].transpose()
103
104 if k == p * m:
105 # from pyrics.utilities import pprint
106 # pprint(M)
107 thetahat = M.inv() * gvec
108 else:
109 thetahat = factor((factor(M.transpose() * M)).inv()) * M.transpose() * gvec
110

111 thetahat = factor(thetahat)
112 theta = factor(K * thetahat)
113

114 Q = Matrix.zeros(p, p)
115 P = Matrix.zeros(p, m)
116 xix = 0
117 for i in range(p):
118 for j in range(p):
119 Q[i, j] = theta[xix, 0]
120 xix += 1
121

122 for i in range(p):
123 for j in range(m):
124 P[i, j] = theta[xix, 0]
125 xix += 1
126
127 self.Lunstacked = Lunstacked
128 self.L = L
129 self.M = factor(M)
130 self.gvec = gvec
131 self.thetahat = factor(thetahat)
132 self.K = K
133 self.theta = theta
134
135 return Q, P

Listing 2 pyrics.Algorithms.Identifiability

1 #------------------------------------------------------------
2 # pyrics/Algorithms/identifiability.py
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3 #
4 # Verifies and encodes identifiability conditions.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 import numpy as np
22 from numpy.linalg import pinv, matrix_rank as rank
23

24 def checkIdentifiability(K, p, m):
25 '''Ensure that the indentifiability conditions are appropriate, or create them
26 if not given (assumes target specificity with hollow Q if not given).
27
28 The DSF being reconstructed has Q as p x p and P as p x m.
29
30 Raises
31 ------
32 ValueError if K does not appropriately encode indentifiability conditions.
33 This is triggered if:
34 - K is not (p^2 + pm x pm)
35 - K is not full column rank (i.e., rank(K) != pm)
36
37 Parameters
38 ----------
39 K : None or np.array (p^2 + pm x k)
40 The encoding of the identifiability conditions, or None if target
41 specificity is to be encoded. Must have k <= pm and rank K = k.
42 p : int > 0
43 m : int > 0
44
45 Returns
46 -------
47 K : (p^2 + pm x pm)
48 A copy of K if K was not None, or the newly created K if it was none.
49 Ki : (pm x p^2 + pm)
50 The Moore-penrose pseudo inverse of K (i.e., Ki * K = I_pm, where I_pm is
51 the pm x pm identity matrix).
52 '''
53 p2 = p * p
54 pm = p * m
55 p2pm = p2 + pm
56
57 if K is None:
58 if p != m:
59 raise ValueError((
60 'If K is not given, must have p = m (P square) in order to encode '
61 'target specificity. Given p = {} and m = {}'
62 ).format(p, m))
63 K11 = np.eye(p2)
64 K22 = np.eye(pm)
65 Qkeep = []
66 Pkeep = []
67 ix = 0
68 for i in range(p):
69 for j in range(m):
70 if i == j:
71 Pkeep.append(ix)
72 else:
73 Qkeep.append(ix)
74 ix += 1
75 K11 = K11[:, Qkeep]
76 K22 = K22[:, Pkeep]
77 K12 = np.zeros((p2, m))
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78 K21 = np.zeros((pm, p2 - p))
79 Ktop = np.concatenate((K11, K12), axis=1)
80 Kbot = np.concatenate((K21, K22), axis=1)
81 K = np.concatenate((Ktop, Kbot), axis=0)
82
83 rows, cols = K.shape
84
85 if rows != p2pm:
86 raise ValueError((
87 'K must have p^2 + pm rows. Given p^2 + pm = {}, but K has {} rows'
88 ).format(p2pm, rows))
89 if cols > pm:
90 raise ValueError((
91 'K must have pm or fewer columns. Given pm = {}, but K has {} columns'
92 ).format(pm, cols))
93

94 rK = rank(K)
95
96 if rK != cols:
97 raise ValueError((
98 'K must be full-column rank (i.e., rank(K) must be k = {}), '
99 'but rank(K) = {}'

100 ).format(cols, rK))
101

102 return K, pinv(K)

Listing 3 pyrics.Algorithms.TimeDomainReconstruction

1 #------------------------------------------------------------
2 # pyrics/Algorithms/TimeDomainReconstruction.py
3 #
4 # The time-domain network reconstruction algorithm.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 from functools import partial
22 import numpy as np
23
24 from pyrics.utilities import vprint as vprintfull
25 from pyrics.Algorithms.Identifiability import checkIdentifiability
26 from pyrics.Representations.ImpulseScalar import ImpulseScalar
27 from pyrics.Representations.ImpulseTF import ImpulseTF
28 from pyrics.Representations.ImpulseDSF import ImpulseDSF
29
30 #------------------------------------------------------------
31 def timeReconstruct(Du, Dy, r, K=None, tol=0.001, precision=1e-6,
32 verbose=False):
33 '''Reconstruct an impulse response from input data Du and output data Dy.
34
35 Parameters
36 ----------
37 Du : numpy array (T x m)
38 The input data, where the t'th row of Du is u(t) (transpose).
39 Du : numpy array (T x p)
40 The output data, where the t'th row of Dy is y(t) (transpose).
41 r : int s.t. 0 < r <= T
42 Must be large enough such that every impulse response in the reconstructed
43 Q(t) and P(t) is approximately 0 for every t > r.
44 K : np.array (p^2 + pm x pm) or None, default=None
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45 The identifiability conditions required to map the TF to the DSF uniquely.
46 If None, assumes that P is diagonal (target specificity); however, an
47 exception is raised in this case if p != m.
48 tol : number or None
49 If not None, performs a check on the goodness of the choice of r using
50 the singular values of L. Let s1 be the rpm'th singular value and s2 be
51 the (rpm + 1)'th singular value. Then, a warning is given if
52 (s1 - s2) / s1 <= 1 - tol (since s2 should be small compared to s1).
53 precision : number > 0
54 Sets `ImpulseScalar.precision` for every impulse response generated.
55 verbose : bool
56 If True, prints status messages as the algorithm processes.
57
58 Returns
59 -------
60 QP : ImpulseDSF
61 The reconstructed network.
62 '''
63 vprint = partial(vprintfull, verbose=verbose)
64 vprint('Initializing Algorithm')
65
66 self = timeReconstruct
67 T, m = Du.shape
68 T1, p = Dy.shape
69
70 assert p == m # TODO - generalize
71
72 if T1 != T:
73 raise ValueError((
74 'Du and Dy must be the same length (same number of rows). Given '
75 'Du with {} rows and Dy with {} rows.'
76 ).format(T, T1))
77

78 vprint('Checking the Identifiability Conditions')
79 K, _ = checkIdentifiability(K, p, m)
80

81 vprint('Building yvec')
82 self.yvec = Dy.reshape((T * p, 1)) # numpy does row-major order by default
83

84 vprint('Building M')
85 self.M = _buildM(Du, Dy, r, K)
86

87 vprint('Running Least Squares to fit the impulse responses')
88 theta, _, _, s = np.linalg.lstsq(self.M, self.yvec, rcond=None)
89 theta = theta.reshape((r * p * p, 1))
90
91 # Check singular values:
92 if tol is not None:
93 vprint('Checking the singular values')
94 # Otherwise the singular values are zero, which is good
95 if len(s) >= r * p * m + 1:
96 ratio = (s[r * p * m - 1] - s[r * p* m]) / s[r * p * m]
97 if (1 - ratio) >= tol:
98 raise Warning((
99 'Singular value tolerance violated (ratio={:.5f}, should be close to '

100 '1); likely r is too small.'
101 ).format(ratio))
102

103 vprint('Extracting Q(t) and P(t) from theta')
104 Q, P = _extractQP(theta, p, m, r, K, precision)
105

106 vprint('Collecting and returning')
107 return ImpulseDSF(Q, P)
108
109

110 def _buildM(Du, Dy, r, K):
111 '''Builds the M matrix required for reconstruction, reducing according to
112 the identifiability conditions.
113
114 Parameters
115 ----------
116 Du : numpy array (T x m)
117 The input data, where the t'th row of Du is u(t) (transpose).
118 Du : numpy array (T x p)
119 The output data, where the t'th row of Dy is y(t) (transpose).
120 r : int s.t. 0 < r <= T
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121 Must be large enough such that every impulse response in the reconstructed
122 Q(t) and P(t) is approximately 0 for every t > r.
123 K : np.array (p^2 + pm x pm)
124 The identifiability conditions required to map the TF to the DSF uniquely.
125
126 Returns
127 -------
128 L : np.array (pT x r(pm + p^2))
129 '''
130 T, m = Du.shape
131 _, p = Dy.shape
132

133 Mbar_cache = {}
134
135 #-----------
136 def Ybar(k):
137 # Build Ybark
138 Ybark = np.zeros((p, p * p))
139 for i in range(p):
140 y = Dy[k, :].reshape((1, p))
141 Ybark[i, i * p : (i + 1) * p] = y
142
143 return Ybark
144
145 #-----------
146 def Ubar(k):
147 # Build Ubark
148 Ubark = np.zeros((p, m * p))
149 for i in range(p):
150 u = Du[k, :].reshape((1, m))
151 Ubark[i, i * m : (i + 1) * m] = u
152
153 return Ubark
154
155 #-----------
156 def Mbar(k):
157 # Check if cached
158 if k in Mbar_cache:
159 return Mbar_cache[k]
160
161 # Build Mbark
162 Ybark = Ybar(k)
163 Ubark = Ubar(k)
164 Mbark = np.concatenate((Ybark, Ubark), axis=1)
165
166 # Utilize Identifiability Conditions
167 Mbark = Mbark.dot(K)
168
169 # Cache and return
170 Mbar_cache[k] = Mbark
171 return Mbark
172
173 # Build M
174 _, width = K.shape
175 M = np.zeros((p * T, r * width))
176 for i in range(T):
177 for j in range(r):
178 k = i - j
179 if k < 0:
180 break
181

182 M[i * p: (i + 1) * p, j * width: (j + 1) * width] = Mbar(k)
183
184 return M
185

186 def _extractQP(theta, p, m, r, K, precision):
187 '''Extract Q and P from theta.
188
189 Parameters
190 ----------
191 theta : np.array (r * width x 1)
192 The learned parameters in the impulse responses of Q and P.
193 p : int > 0
194 m : int > 0
195 r : int > 0
196 K : np.array (p^2 + pm x width)
197 precision : number > 0
198
199 Returns
200 -------
201 Q : ImpulseTF (p x p)
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202 P : ImpulseTF (p x m)
203 '''
204 Qa = []
205 Pa = []
206 for i in range(p):
207 Qa.append([])
208 Pa.append([])
209 for j in range(p):
210 Qa[i].append([])
211 for j in range(m):
212 Pa[i].append([])
213
214 _, width = K.shape
215 for k in range(r):
216 x = theta[k * width : (k + 1) * width, :]
217 vec = K.dot(x)
218
219 ix = 0
220 for i in range(p):
221 for j in range(p):
222 Qa[i][j].append(vec[ix, 0])
223 ix += 1
224

225 for i in range(p):
226 for j in range(m):
227 Pa[i][j].append(vec[ix, 0])
228 ix += 1
229

230 Q = []
231 P = []
232 for i in range(p):
233 Q.append([])
234 P.append([])
235 for j in range(p):
236 Q[i].append(ImpulseScalar(Qa[i][j], precision=precision))
237 for j in range(m):
238 P[i].append(ImpulseScalar(Pa[i][j], precision=precision))
239

240 Q = ImpulseTF(Q)
241 P = ImpulseTF(P)
242 return Q, P

Listing 4 pyrics.Plot.PlotSimulation

1 #------------------------------------------------------------
2 # pyrics/Plot/PlotSimulation.py
3 #
4 # Plotting utilities to show input-output data.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 import plotly.graph_objs as go
22 from plotly import tools
23
24

25 def plotSimulation(Du, Dy, plot):
26 '''Create a plot of the inputs in Du and the outputs in Dy.
27
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28 Only one plot will be generated, but with two subfigures. Inputs will all be
29 drawn on the top subfigure, and outputs will all be drawn on the bottom
30 subfigure.
31
32 Parameters
33 ----------
34 Du : numpy array (T x m)
35 The input data, where the t'th row of Du is u(t) (transpose).
36 Du : numpy array (T x p)
37 The output data, where the t'th row of Dy is y(t) (transpose).
38 plot : function (plotly plot function)
39 Plots a single plot of the input/output data using that function.
40 '''
41 T, p = Du.shape
42 T1, m = Dy.shape
43
44 if T1 != T:
45 raise ValueError((
46 'Du and Dy must be the same length (same number of rows). Given '
47 'Du with {} rows and Dy with {} rows.'
48 ).format(T, T1))
49

50 fig = tools.make_subplots(
51 rows=2, cols=1, print_grid=False,
52 subplot_titles=['Input Data', 'Output Data']
53 )
54

55 for i in range(m):
56 trace = go.Scatter(
57 x=list(range(T)),
58 y=Du[:, i],
59 name=r'$u_{}(t)$'.format(i + 1)
60 )
61 fig.append_trace(trace, 1, 1)
62

63 for i in range(p):
64 trace = go.Scatter(
65 x=list(range(T)),
66 y=Dy[:, i],
67 name=r'$y_{}(t)$'.format(i + 1)
68 )
69 fig.append_trace(trace, 2, 1)
70

71 plot(fig)

Listing 5 pyrics.Plot.plotTimeReconstructionComparison

1 #------------------------------------------------------------
2 # pyrics/Plot/PlotPassiveComparison.py
3 #
4 # Plotting utilities to compare time-domain reconstructed and actual models.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 from math import ceil
22 import plotly.graph_objs as go
23
24
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25 def plotTimeReconstructionComparison(plot, QPimp, QPconv=None, QPact=None,
26 ylimbound=0.1):
27 '''Generate plots (one for each impulse response) comparing the response in
28 QPimp to that in QPconv and QPact (if given).
29
30 This is designed such that QPimp is the response found through the least
31 squares portion of the passive reconstruction algorith, QPconv is QPimp
32 converted into convolutional form and QPact, if given, is the impulse response
33 from the actual model that generated the data.
34
35 Parameters
36 ----------
37 plot : function (plotly plot function)
38 The plotly plotting function
39 QPimp : ImpulseDSF
40 QPconv : ConvolutionalDSF
41 QPact : DiscreteDSF
42 ylimbound : number > 0
43 Prevents plotly from zooming in too far and making negligibly-zero impulse
44 responses look non-zero.
45 If there are any values less than 0, then the plot will begin at y no
46 greater than ``-ylimbound` on the negative side of the y axis (otherwise,
47 the plot can start at 0 on the y axis). If there are any positive values
48 greater than zero, then the plot will end at y no less than `ylimbound`
49 (otherwise, the plot can end at 0 on the y axis). If there are no non-zero
50 values, then the y axis will range from `-ylimbound` to `ylimbound`
51 '''
52 p, m = QPimp.shape
53 r = QPimp.r
54
55 comma = ''
56 if max(p, m) >= 10:
57 comma = ','
58
59 if QPconv is not None:
60 p1, m1 = QPconv.shape
61 assert p == p1
62 assert m == m1
63

64 QPconvimp = QPconv.to_impulse(r=r)
65 QPactimp = None
66
67 if QPact is not None:
68 p2, m2 = QPact.shape
69 assert p == p2
70 assert m == m2
71

72 QPactimp = QPact.to_convolutional().to_impulse(r=r)
73

74 def getQorP(QorP, QP):
75 assert QorP in ['Q', 'P']
76
77 if QorP == 'Q':
78 return QP.Q
79
80 return QP.P
81

82 def plotImp(QorP, i, j):
83 traces = []
84
85 if QPactimp is not None:
86 traces.append(go.Scatter(
87 x=list(range(r)),
88 y=getQorP(QorP, QPactimp)[i, j].impulse,
89 name='Actual Model',
90 line=dict(
91 width=2,
92 dash='dashdot'
93 )
94 ))
95

96 traces.append(go.Scatter(
97 x=list(range(r)),
98 y=getQorP(QorP, QPimp)[i, j].impulse,
99 name='Reconstructed Impulse Response',

100 mode='markers'
101 ))
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102
103 if QPconv is not None:
104 traces.append(go.Scatter(
105 x=list(range(r)),
106 y=getQorP(QorP, QPconvimp)[i, j].impulse,
107 name='Projected Convolutional Form',
108 mode='lines'
109 ))
110

111 name = r'${}_{{{}{}{}}}$'.format(QorP, i + 1, comma, j + 1)
112

113 def ylimoneside(mx):
114 if mx <= 0:
115 return 0
116 return max(ceil((mx + 0.01) * 10) / 10, ylimbound)
117

118 def yf(fcn):
119 mn = fcn(getQorP(QorP, QPimp)[i, j].impulse)
120 if QPact is not None:
121 mnact = fcn(getQorP(QorP, QPactimp)[i, j].impulse)
122 mn = fcn(mnact, mn)
123 if QPconv is not None:
124 mnconv = fcn(getQorP(QorP, QPconvimp)[i, j].impulse)
125 mn = fcn(mnconv, mn)
126
127 return mn
128

129 def ylim():
130 lb = -ylimoneside(-yf(min))
131 ub = ylimoneside(yf(max))
132
133 if lb == 0 and ub == 0:
134 return [-ylimbound, ylimbound]
135 return lb, ub
136

137 layout = go.Layout(
138 title='{} Comparisons'.format(name),
139 xaxis=dict(title=r'$t = 0, \ldots, r$'),
140 yaxis=dict(title='{}(t)'.format(name), range=ylim()),
141 )
142

143 plot(dict(data=traces, layout=layout))
144
145 # Plot impulse responses in Q
146 for i in range(p):
147 for j in range(p):
148 plotImp('Q', i, j)
149
150 # Plot impulse responses in P
151 for i in range(p):
152 for j in range(m):
153 plotImp('P', i, j)

Listing 6 pyrics.Representations.ConvolutionalDSF

1 #------------------------------------------------------------
2 # pyrics/Representations/ConvolutionalDSF.py
3 #
4 # Representation of a DSF in convolutional form.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
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18 # limitations under the License.
19 #------------------------------------------------------------
20
21 from .SystemRepresentation import SystemRepresentation
22 from .ConvolutionalTF import ConvolutionalTF
23
24

25 class ConvolutionalDSF(SystemRepresentation):
26 '''Representation of a DSF where each entry is in convolutional form.
27
28 Models
29

30 Y(t) = Q(t) * Y(t) + P(t) * U(t),
31

32 where * is the convolution operation and each Q_ij(t), P_ij(t) is an
33 impulse response in convolutional form; i.e.,
34

35 Q_ij(t) = a delta(t, 0) + sum_{n = 1}^w b_n c_n^t
36
37 for parameters a, b_n, and c_n, n = 1, ..., w.
38
39 Parameters
40 ----------
41 Q : numpy array (p x p)
42 P : numpy array (p x m)
43 '''
44
45 #------------------------------------------------------------
46 def __init__(self, Q, P):
47 self.Q = Q
48 self.P = P
49

50 if not isinstance(Q, ConvolutionalTF):
51 raise ValueError('Q must be a ConvolutionalTF; given {}'.format(type(Q)))
52 if not isinstance(P, ConvolutionalTF):
53 raise ValueError('P must be a ConvolutionalTF; given {}'.format(type(P)))
54

55 assert len(Q.shape) == 2
56 assert len(P.shape) == 2
57
58 p, p1 = Q.shape
59 p2, m = P.shape
60
61 if p != p1:
62 raise ValueError(
63 'Dimension Mismatch: Q must be square. Got dimensions ({}, {})'.format(
64 p, p1
65 )
66 )
67
68 if p != p2:
69 raise ValueError(
70 'Dimension Mismatch: Q and P must have the same number of '
71 'rows. Got dimensions ({}, {}) and ({}, {})'.format(
72 p, p1, p2, m
73 )
74 )
75
76 self.p = p
77 self.m = m
78
79 #####################################################################
80 # Public Methods
81 #####################################################################
82
83 #------------------------------------------------------------
84 @property
85 def shape(self):
86 '''Determine the state of this DSF.
87
88 Given the dimensions of Q as p x p and the dimensions of P as p x m, the
89 shape is (p, m).
90 '''
91 return self.p, self.m
92
93 #####################################################################
94 # Conversion functions
95 #####################################################################
96
97 #------------------------------------------------------------
98 def to_DSF(self):
99 '''Convert this ConvolutionalDSF to a DiscreteDSF/

100
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101 Returns
102 -------
103 F : DiscreteDSF
104 '''
105 from .DiscreteDSF import DTDSF
106

107 Q = self.Q.to_TF()
108 P = self.P.to_TF()
109

110 return DTDSF(Q, P)
111
112 #------------------------------------------------------------
113 def to_impulse(self, r):
114 '''Convert this ConvolutionalDSF into an ImpulseDSF.
115
116 Returns
117 -------
118 F : ImpulseDSF (p x m)
119 '''
120 from .ImpulseDSF import ImpulseDSF
121

122 Qimpulse = self.Q.to_impulse(r)
123 Pimpulse = self.P.to_impulse(r)
124

125 return ImpulseDSF(Qimpulse, Pimpulse)
126
127
128 #####################################################################
129 # Printing and representation functions
130 #####################################################################
131
132 #------------------------------------------------------------
133 def __repr__(self):
134 # return repr(self.G)
135 return 'Q = {}\nP = {}'.format(repr(self.Q), repr(self.P))
136
137 #------------------------------------------------------------
138 def latex(self, **kwargs):
139 '''Return the latex formatted version of this DSF.
140
141 Parameters
142 ----------
143 Qname : str (latex formatting)
144 The name to give to the Q matrix.
145 Pname : str (latex formatting)
146 The name to give to the P matrix.
147
148 Returns
149 -------
150 latex : str
151 '''
152 Qname = kwargs.get('Qname', 'Q')
153 Pname = kwargs.get('Pname', 'P')
154 return r'{} \qquad {}'.format(
155 self.Q.latex(name=Qname), self.P.latex(name=Pname)
156 )

Listing 7 pyrics.Representations.ConvolutionalScalar

1 #------------------------------------------------------------
2 # pyrics/Representations/ConvolutionalScalar.py
3 #
4 # Representation of a proper rational function in convolutional form.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
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19 #------------------------------------------------------------
20
21 from sympy.abc import z
22
23 from .SystemRepresentation import SystemRepresentation
24 from .DiscreteTransferFunction import DTTF
25
26

27 class ConvolutionalScalar(SystemRepresentation):
28 '''The convolutional representation of a linear impulse response; i.e.,
29

30 f(t) = a delta(t, 0) + sum_{n = 1}^w b_n c_n^t
31
32 for parameters a, b_n, and c_n, n = 1, ..., w.
33
34 Parameters
35 ----------
36 params : list (lengh 2 * w + 1)
37 [a, b_1, c_1, b_2, c_2, ..., b_w, c_w].
38 tol : number > 0
39 If either |b_i| < tol or |c_i| < tol, that parameter pair is removed from
40 the list (this helps clean up the conversions).
41 '''
42
43 #------------------------------------------------------------
44 def __init__(self, params, tol=1e-6):
45

46 if len(params) % 2 != 1:
47 raise ValueError(
48 'params must have an odd number of entries. Contains {} entries'.format(
49 len(params)
50 )
51 )
52

53 rparams = [params[0]]
54 rest = params[1:]
55 for i in range(0, len(rest), 2):
56 b = rest[i]
57 c = rest[i + 1]
58 if abs(b) < tol or abs(c) < tol:
59 continue
60 rparams += [b, c]
61
62 params = rparams
63

64 self.w = int((len(params) - 1) / 2)
65 self.params = params
66
67 #####################################################################
68 # Public functions
69 #####################################################################
70

71 def inf_norm(self, r=100):
72 '''Compute the infinity norm of this convolutional transfer function.
73
74 The infinity norm is the one norm of the corresponding impulse response.
75
76 r : int > 0
77 See parameter `r` in `to_impulse()`. The norm must convert to the finite
78 impulse response before computing the norm. In the future, an option will
79 be added to automatically determine r, but for now, it must predefined
80 (defaults to 100).
81
82 Returns
83 -------
84 norm : float >= 0
85 '''
86 imp = self.to_impulse(r=r)
87 return imp.one_norm()
88
89 #####################################################################
90 # Conversion functions
91 #####################################################################
92
93 #------------------------------------------------------------
94 def to_TF(self):
95 '''Converts this convolutional form into a SISO transfer function.
96
97 Returns
98 -------
99 tf : DiscreteTransferFunction (1x1)

100 '''
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101 # a = self.params[0]
102 rest = self.params[1:]
103 bc = [
104 (rest[i], rest[i + 1]) for i in range(0, len(rest), 2)
105 ]
106
107 G = 0
108 for bi, ci in bc:
109 alpha = bi * ci
110 beta = ci
111 G += alpha / (z - beta)
112

113 return DTTF([[G]])
114
115 #------------------------------------------------------------
116 def to_impulse(self, r=100):
117 '''Converts this convolutional form into an impulse response.
118
119 Parameters
120 ----------
121 r : int > 0
122 Creates an impulse response g(t) = [f(0), ..., f(r - 1)], where g(t) is
123 the impulse response and f(t) is the convolutional form. Note that f(t)
124 should be approximately zero for every t >= r; however, this condition is
125 not checked.
126
127 TODO - auto find a good r
128
129 Returns
130 -------
131 ConvolutionalScalar
132 '''
133 from .ImpulseScalar import ImpulseScalar
134

135 a = self.params[0]
136 rest = self.params[1:]
137

138 def _f(t):
139
140 if t == 0:
141 rs = a
142 else:
143 rs = 0
144

145 for i in range(0, len(rest), 2):
146 b = rest[i]
147 c = rest[i + 1]
148 rs += b * c ** t
149
150 return rs
151

152 g = []
153 for t in range(r):
154 g.append(_f(t))
155

156 return ImpulseScalar(g)
157
158 #####################################################################
159 # Printing and representation functions
160 #####################################################################
161
162 #------------------------------------------------------------
163 def __repr__(self):
164 return repr(self.params)
165
166 #------------------------------------------------------------
167 def latex(self, **kwargs):
168 '''Returns the latex formatted version of this transfer function.
169
170 kwargs
171 ----------
172 name : str or None, default = G
173 Prefixes the latex with 'name = ' for whatever name is given. If
174 name is None, just gives the equation.
175
176 Returns
177 -------
178 latex : str
179 '''
180 name = kwargs.get('name', 'f(t)')
181

182 # sp.init_printing(use_latex='mathjax')
183 if name is not None:
184 prefix = '{} = '.format(name)
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185 else:
186 prefix = ''
187

188 if len(self.params) == 1:
189 if self.params[0] == 0:
190 return '{} 0'.format(prefix)
191 return '{} {:.3f}\\delta_{{(t, 0)}}'.format(prefix, self.params[0])
192

193 a = self.params[0]
194 rest = self.params[1:]
195 bc = [
196 '{:.3f}({:.3f})^t'.format(rest[i], rest[i + 1])
197 for i in range(0, len(rest), 2)
198 ]
199 bcstr = ' + '.join(bc)
200

201 return '{} {:.3f}\\delta_{{(t, 0)}} + {}'.format(prefix, a, bcstr)

Listing 8 pyrics.Representations.ConvolutionalTF

1 #------------------------------------------------------------
2 # pyrics/Representations/ConvolutionalTF.py
3 #
4 # Representation of a transfer function in convolutional form.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 from .SystemRepresentation import SystemRepresentation
22 from .ConvolutionalScalar import ConvolutionalScalar
23
24

25 class ConvolutionalTF(SystemRepresentation):
26 '''Representation of a transfer function matrix in convolutional form.
27
28 Parameters
29 ----------
30 G : list of lists of ImpulseScalar (p x m array)
31 '''
32
33 #------------------------------------------------------------
34 def __init__(self, G):
35 self.G = G
36 self.p = len(G)
37 assert self.p > 0
38 self.m = len(G[0])
39
40 for inner in self.G:
41 assert len(inner) == self.m
42 for el in inner:
43 assert isinstance(el, ConvolutionalScalar)
44
45 #------------------------------------------------------------
46 @property
47 def shape(self):
48 '''Give the shape of this convlolutional TF, which is p x m.
49
50 Returns
51 -------
52 shape : (int > 0, int > 0)
53 '''
54 return (self.p, self.m)
55
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56 #####################################################################
57 # Public functions
58 #####################################################################
59

60 def scalar_inf_norm(self, r=100):
61 '''Compute a matrix of the same dimensions as this, where the entries
62 are the infinity-norms of the corresponding convolutional scalars.
63
64 Parameters
65 ----------
66 r : int > 0, default = 100
67 An integer such that every finite impulse response in this matrix is
68 approximately zero for all t >= r. See the documentation for
69 `ConvolutionalScalar.inf_norm()` for more details.
70
71 Returns
72 -------
73 M : np.array (p x m)
74 '''
75 return self.to_impulse(r=r).scalar_one_norm()
76
77 #####################################################################
78 # Conversion functions
79 #####################################################################
80
81 #------------------------------------------------------------
82 def to_TF(self):
83 '''Convert this ConvolutionalTF to a DTTF.
84
85 Returns
86 -------
87 G : DTTF (p x m)
88 '''
89 from .DiscreteTransferFunction import DTTF
90

91 G = []
92 for i in range(self.p):
93 G.append([])
94 for j in range(self.m):
95 G[i].append(self.G[i][j].to_TF())
96

97 return DTTF(G)
98
99 #------------------------------------------------------------

100 def to_impulse(self, r):
101 '''Convert this ConvolutionalTF into an ImpulseTF.
102
103 Returns
104 -------
105 G : ImpulseTF (p x m)
106 '''
107 from .ImpulseTF import ImpulseTF
108

109 G = []
110 for i in range(self.p):
111 G.append([])
112 for j in range(self.m):
113 G[i].append(self.G[i][j].to_impulse(r=r))
114

115 return ImpulseTF(G)
116
117 #####################################################################
118 # Printing and representation functions
119 #####################################################################
120
121 #------------------------------------------------------------
122 def __repr__(self):
123 return repr(self.G)
124
125 #------------------------------------------------------------
126 def latex(self, **kwargs):
127 '''Returns the latex formatted version of this transfer function.
128
129 kwargs
130 ----------
131 name : str or None, default = G
132 Prefixes the latex with 'name = ' for whatever name is given. If
133 name is None, just gives the equation.
134
135 Returns
136 -------
137 latex : str

217



www.manaraa.com

138 '''
139 name = kwargs.get('name', 'G(t)')
140

141 # sp.init_printing(use_latex='mathjax')
142 if name is not None:
143 prefix = '{} = '.format(name)
144 else:
145 prefix = ''
146

147 matrixstr = '\\\\'.join(
148 [' & '.join([el.latex(name=None) for el in inner]) for inner in self.G]
149 )
150 return '{} \\begin{{bmatrix}}{}\\end{{bmatrix}}'.format(prefix, matrixstr)
151
152 #####################################################################
153 # Magic Functions
154 #####################################################################
155
156 #------------------------------------------------------------
157 def __getitem__(self, key):
158 assert len(key) == 2
159 return self.G[key[0]][key[1]]
160
161 #------------------------------------------------------------
162 def __setitem__(self, key, value):
163 assert len(key) == 2
164 self.G[key[0]][key[1]] = value

Listing 9 pyrics.Representations.DiscreteDSF

1 #------------------------------------------------------------
2 # pyrics/Representations/DiscreteDSF.py
3 #
4 # Representation of a discrete-time DSF.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 # import warnings
22 from sympy import oo
23 from sympy.matrices import Matrix, eye
24 from numpy.linalg import matrix_rank as rank
25
26 from .DiscreteTime import DiscreteTime
27
28

29 class DTDSF(DiscreteTime):
30 '''Representation of a discrete time dynamical structure function.
31
32 Models
33

34 Y(z) = Q(z)Y(z) + P(z)U(z)
35
36 Parameters
37 ----------
38 Q : DTTF
39 P : DTTF
40 '''
41
42 #------------------------------------------------------------
43 def __init__(self, Q, P):
44 from . import DTTF
45

46 if not isinstance(Q, DTTF):
47 raise ValueError('Q must be a DTTF')

218



www.manaraa.com

48 if not isinstance(P, DTTF):
49 raise ValueError('P must be a DTTF')
50
51 p, p1 = Q.shape
52 p2, m = P.shape
53
54 if p != p1:
55 raise ValueError(
56 'Dimension Mismatch: Q must be square. Got dimensions ({}, {})'.format(
57 p, p1
58 )
59 )
60
61 if p != p2:
62 raise ValueError(
63 'Dimension Mismatch: Q and P must have the same number of '
64 'rows. Got dimensions ({}, {}) and ({}, {})'.format(
65 p, p1, p2, m
66 )
67 )
68
69 self.Q = Q
70 self.P = P
71 self.p = p
72 self.m = m
73
74 self._W = None
75 self._V = None
76
77 #####################################################################
78 # Public Methods
79 #####################################################################
80
81 #------------------------------------------------------------
82 @property
83 def shape(self):
84 '''Determine the state of this DSF.
85
86 Given the dimensions of Q as p x p and the dimensions of P as p x m, the
87 shape is (p, m).
88 '''
89 return self.p, self.m
90
91 #------------------------------------------------------------
92 def is_wellposed(self):
93 '''Determine whether this network is well-posed, according to the definition
94 in [1,2].
95
96 Returns
97 -------
98 iswp : bool
99 True if this network is well-posed (i.e., (I - Q) has a proper

100 inverse); False otherwise.
101
102 Sources
103 -------
104 [1] N. Woodbury, A. Dankers and S. Warnick, "On the Well-Posedness of
105 LTI Networks," Conference on Decision and Control, Melbourne,
106 Australia, 2017.
107 [2] N. Woodbury, A. Dankers and S. Warnick, "Dynamic Networks:
108 Representations, Abstractions, and Well-Posedness," Conference on
109 Decision and Control, Miami Beach, Florida, 2018.
110 '''
111 from . import DTTF
112

113 ImQ = DTTF(Matrix.eye(self.p)) - self.Q
114 ImQ_oo = ImQ.limit(oo)
115 return rank(ImQ_oo) == self.p
116
117 #------------------------------------------------------------
118 def immerse(self, S):
119 '''Find the immersion of this DSF where only outputs in S (zero indexed)
120 are manifest.
121
122 TODO : when DiscreteDNF is added, separate implementation into a node
123 abstraction followed by an edge abstraction.
124
125 Attributes
126 ----------
127 (Only access these immediately after the abstract function is called,
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128 they are read only and are designed to show intermediate computation.
129 For `F = DTDSF()`, access the attributes with `F._W` or `F._V`)
130 _W : DTTF
131 The intermediate W computed. Note that this would be the W in the DNF
132 if only a node abstraction and not an edge abstraction is used.
133 _V : DTTF
134 The intermediate V computed. Note that this would be the V in the DNF
135 if only a node abstraction and not an edge abstraction is used.
136
137 Parameters
138 ----------
139 S : list
140 A list of indices that remain manifest in the immersion (zero indexed).
141
142 Returns
143 -------
144 FS : DTDSF
145 The immersed DSF.
146 '''
147 from . import DTTF
148

149 U = set(range(self.p))
150 S = set(S)
151 S &= U
152 Sbar = U - S
153

154 S = list(S)
155 S.sort()
156 Sbar = list(Sbar)
157 Sbar.sort()
158
159 Q = self.Q
160 P = self.P
161

162 Q11 = Q[S, S]
163 Q12 = Q[S, Sbar]
164 Q21 = Q[Sbar, S]
165 Q22 = Q[Sbar, Sbar]
166

167 P11 = P[S, :]
168 P22 = P[Sbar, :]
169

170 I11 = DTTF(eye(Q11.shape[0]))
171 I22 = DTTF(eye(Q22.shape[0]))
172 inner = Q12 * (I22 - Q22).inv()
173 W = Q11 + inner * Q21
174 V = P11 + inner * P22
175
176 self._W = W
177 self._V = V
178

179 DW = W.diag()
180

181 ImDW = (I11 - DW).inv()
182 Q = ImDW * (W - DW)
183 P = ImDW * V
184

185 return DTDSF(Q, P)
186
187 #####################################################################
188 # Conversions
189 #####################################################################
190
191 #------------------------------------------------------------
192 def to_TF(self):
193 '''Convert this DSF into a transfer function.
194
195 Returns
196 -------
197 G : DTTF
198 '''
199 from . import DTTF
200

201 Iq = DTTF(eye(self.Q.shape[0]))
202 G = (Iq - self.Q).inv() * self.P
203 return G
204
205 #------------------------------------------------------------
206 def to_convolutional(self):
207 '''Converts this DSF into a convolutional DSF.
208
209 Returns
210 -------
211 ConvolutionalDSF
212 '''
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213 from . import ConvolutionalDSF
214

215 Qconv = self.Q.to_convolutional()
216 Pconv = self.P.to_convolutional()
217 return ConvolutionalDSF(Qconv, Pconv)
218
219 #####################################################################
220 # Printing and representation functions
221 #####################################################################
222
223 #------------------------------------------------------------
224 def __repr__(self):
225 # return repr(self.G)
226 return 'Q = {}\nP = {}'.format(repr(self.Q), repr(self.P))
227
228 #------------------------------------------------------------
229 def latex(self, **kwargs):
230 '''Return the latex formatted version of this DSF.
231
232 Parameters
233 ----------
234 Qname : str (latex formatting)
235 The name to give to the Q matrix.
236 Pname : str (latex formatting)
237 The name to give to the P matrix.
238
239 Returns
240 -------
241 latex : str
242 '''
243 Qname = kwargs.get('Qname', 'Q')
244 Pname = kwargs.get('Pname', 'P')
245 return r'{} \qquad {}'.format(
246 self.Q.latex(name=Qname), self.P.latex(name=Pname)
247 )

Listing 10 pyrics.Representations.DiscreteGeneralizedStateSpace

1 #------------------------------------------------------------
2 # pyrics/Representations/DiscreteGeneralizedStateSpace.py
3 #
4 # Representation of a discrete-time genearlized state space model.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 import numpy as np
22 from sympy import Matrix, eye, latex
23 from sympy.abc import z
24
25 from .DiscreteTime import DiscreteTime
26
27

28 class DTGSS(DiscreteTime):
29 '''A discrete time generalized state space model in intricacy-observed form,
30 where dynamics are given by:
31

32 x[k + 1] = Ax[k] + Ahat w[k] + Bu[k]
33 y[k] = w[k] = Abar x[k] + Atilde w[k] + Bbar u[k]
34

35 where k is a time index, x[k] is in R^n, u[k] is in R^m, and y[k]
36 is in R^p.
37
38 Parameters
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39 ----------
40 A : numpy.array (n x n)
41 Ahat : numpy.array (n x p)
42 B : numpy.array (n x m)
43 Abar : numpy.array (p x n)
44 Atilde : numpy.array (p x p)
45 Bbar : numpy.array (p x m)
46 '''
47
48 #------------------------------------------------------------
49 def __init__(self, A, Ahat, B, Abar, Atilde, Bbar):
50 A = np.array(A)
51 Ahat = np.array(Ahat)
52 B = np.array(B)
53 Abar = np.array(Abar)
54 Atilde = np.array(Atilde)
55 Bbar = np.array(Bbar)
56
57 # Compute Dimensions
58 n, n1 = A.shape
59 n3, p1 = Ahat.shape
60 n2, m = B.shape
61 p, n4 = Abar.shape
62 p2, p3 = Atilde.shape
63 p4, m1 = Bbar.shape
64
65 # Check Dimensions
66 if n1 != n:
67 raise ValueError(
68 'A must be square. Given A as ({} x {})'.format(n, n1)
69 )
70 if n2 != n:
71 raise ValueError((
72 'B must have the same number of rows as A. Given A as ' # pylint: disable=W1308
73 '({} x {}) but B as ({} x {})'
74 ).format(n, n, n2, m))
75 if n3 != n:
76 raise ValueError((
77 'Ahat must have the same number of rows as A. Given A as ' # pylint: disable=W1308
78 '({} x {}) but Ahat as ({}, {})'
79 ).format(n, n, n3, p1))
80 if p1 != p:
81 raise ValueError((
82 'The number of columns of Ahat must equal the number of rows of Abar. '
83 'Given Abar as ({} x {}) but Ahat as ({}, {})'
84 ).format(p, n4, n3, p1))
85 if n4 != n:
86 raise ValueError((
87 'Abar must have the same number of columns as A. Given A as ' # pylint: disable=W1308
88 '({} x {}) but Abar as ({} x {})'
89 ).format(n, n, p, n4))
90 if p2 != p1:
91 raise ValueError((
92 'Atilde must have the same number of rows as Abar. Given Abar as '
93 '({} x {}) but Atilde as ({} x {})'
94 ).format(p, n4, p2, p3))
95 if p3 != p1:
96 raise ValueError((
97 'Atilde must be square. Given Atilde as ({} x {})'
98 ).format(p2, p3))
99 if p4 != p:

100 raise ValueError((
101 'Bbar must have the same number of rows as Abar. Given Abar as '
102 '({} x {}) but Bbar as ({} x {})'
103 ).format(p, n4, p4, m1))
104 if m1 != m:
105 raise ValueError((
106 'Bbar must have the same number of columns as B. Given B as'
107 '({} x {}) but Bbar as ({} x {})'
108 ).format(n2, m, p4, m1))
109
110 # Register Matrices and Dimensions
111 self.A = A
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112 self.Ahat = Ahat
113 self.B = B
114 self.Abar = Abar
115 self.Atilde = Atilde
116 self.Bbar = Bbar
117
118 self.n = n
119 self.m = m
120 self.p = p
121
122 #####################################################################
123 # Public Methods
124 #####################################################################
125
126 #------------------------------------------------------------
127 def simulate(self, Du, x0=None):
128 '''Simulate the system with the inputs in Du.
129
130 Parameters
131 ----------
132 Du : numpy.array (T x m)
133 The inputs where each row k is u(k)^T.
134 x0 : numpy.array (n x 1)
135 The initial conditions. NOT YET IMPLEMENTED.
136
137 Returns
138 -------
139 Dy : numpy.array (T x p)
140 The simulated outputs given the inputs and initial conditions, where
141 each row k is y(k)^T.
142 '''
143 assert x0 is None # TODO
144
145 A = self.A
146 Ahat = self.Ahat
147 B = self.B
148 Abar = self.Abar
149 Atilde = self.Atilde
150 Bbar = self.Bbar
151 ImAtildeInv = np.linalg.inv(np.eye(Atilde.shape[0]) - Atilde)
152
153 if x0 is None:
154 x0 = np.zeros((self.n, 1))
155
156 T, m = Du.shape
157 assert m == self.m
158 Dy = np.zeros((T, self.p))
159
160 x = x0
161 x = x.reshape((self.n, 1))
162 for i in range(T):
163 u = Du[i, :]
164 u = u.reshape((self.m, 1))
165

166 y = ImAtildeInv.dot(Abar.dot(x) + Bbar.dot(u))
167 y = y.reshape((self.p, 1))
168 x = A.dot(x) + Ahat.dot(y) + B.dot(u)
169 x = x.reshape((self.n, 1))
170 Dy[i, :] = y.T
171
172 return Dy
173
174 #------------------------------------------------------------
175 def is_stable(self, include_marginally=False):
176 '''Determine whether this system is stable.
177
178 This system is considered to be stable if its corresponding state space
179 model is stable.
180
181 Parameters
182 ----------
183 include_marginally : bool, default=True
184 If True, marginally stable systems are considered to be stable,
185 otherwise, marginally stable systems are considered to be unstable.
186
187 Returns
188 -------
189 is_stable : bool
190 '''
191 ss = self.to_SS()
192 return ss.is_stable(include_marginally)
193
194 #####################################################################
195 # Conversions
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196 #####################################################################
197
198 #------------------------------------------------------------
199 def to_SS(self):
200 '''Convert this generalized state space model to a state space model.
201
202 The state space model is found by solving for Atilde in the second equation
203 and plugging in the result in to the first equation.
204
205 Returns
206 -------
207 ss : DTSS
208 '''
209 from . import DTSS
210

211 Ip = np.eye(self.p)
212 inv = np.linalg.inv(Ip - self.Atilde)
213

214 C = inv.dot(self.Abar)
215 D = inv.dot(self.Bbar)
216 A = self.A + self.Ahat.dot(C)
217 B = self.B + self.Ahat.dot(D)
218

219 return DTSS(A, B, C, D)
220
221 #------------------------------------------------------------
222 def to_TF(self):
223 '''Converts this GSS model into a transfer function matrix.
224
225 Returns
226 -------
227 G : DTTF
228 The discrete time transfer function matrix representation of this system.
229 '''
230 from . import DTTF
231

232 A = Matrix(self.A)
233 Ahat = Matrix(self.Ahat)
234 B = Matrix(self.B)
235 Abar = Matrix(self.Abar)
236 Atilde = Matrix(self.Atilde)
237 Bbar = Matrix(self.Bbar)
238

239 In = eye(self.n)
240 Ip = eye(self.p)
241 L = Atilde + Abar * (z * In - A).inv() * Ahat
242 R = Bbar + Abar * (z * In - A).inv() * B
243 G = (Ip - L).inv() * R
244 return DTTF(G)
245
246 #------------------------------------------------------------
247 def to_DSF(self, factor=True):
248 '''Convert this state space model into a DSF.
249
250 TODO : Generalize
251 FOR NOW ASSUMES THAT Bbar = [I 0]
252
253 Parameters
254 ----------
255 factor : bool, default=True
256 If True, simplifies and factors all rational polynomials (coefficients
257 should be rational). Otherwise only simplifies.
258
259 Returns
260 -------
261 QP : DTDSF
262 The discrete time DSF representation of this system.
263 '''
264 from . import DTTF, DTDSF
265

266 A = Matrix(self.A)
267 Ahat = Matrix(self.Ahat)
268 B = Matrix(self.B)
269 # Abar = Matrix(self.Abar)
270 Atilde = Matrix(self.Atilde)
271 Bbar = Matrix(self.Bbar)
272
273 p = self.p
274 n = self.n
275 l = n - p
276

277 A11 = Matrix(A[:p, :p])

224



www.manaraa.com

278 if p < n:
279 A12 = Matrix(A[:p, p:n])
280 A21 = Matrix(A[p:n, :p])
281 A22 = Matrix(A[p:n, p:n])
282 else:
283 A12 = Matrix([])
284 A21 = Matrix([])
285 A22 = Matrix([])
286

287 Ahat1 = Ahat[:p, :]
288 Ahat2 = Ahat[p:, :]
289 B1 = B[:p, :]
290 B2 = B[p:, :]
291

292 Il = eye(l)
293 Wtilde = A11 + A12 * (z * Il - A22).inv() * A21
294 Rtilde = Ahat1 + A12 * (z * Il - A22).inv() * Ahat2
295 Vtilde = B1 + A12 * (z * Il - A22).inv() * B2
296

297 What = 1 / z * Wtilde
298 Rhat = 1 / z * Rtilde
299 Vhat = 1 / z * Vtilde
300 # DTTF(What).display(name=r'\hat{W}')
301
302 # Compute the final DNF
303 # TODO : create DNF class and convert to DSF using edge abstraction
304 Ip = eye(p)
305 W = What + Rhat + (Ip - What) * Atilde
306 # DTTF(W).display(name='W')
307 V = Vhat + (Ip - What) * Bbar
308
309 # Convert to DSF
310 Wdiag = W * 0
311 for i in range(p):
312 Wdiag[i, i] = W[i, i]
313

314 # DTTF((Ip - Wdiag).inv()).display(name='D_W')
315

316 Q = (Ip - Wdiag).inv() * (W - Wdiag)
317 P = (Ip - Wdiag).inv() * V
318
319 if factor:
320 pass # TODO use or remove
321

322 return DTDSF(DTTF(Q), DTTF(P))
323
324 #####################################################################
325 # Printing and representation functions
326 #####################################################################
327
328 #------------------------------------------------------------
329 def __repr__(self):
330 # return repr(self.G)
331 return r'A = {}\nAhat = {}\nB={}\nAbar={}\nAtilde={}\nBbar={}'.format(
332 repr(self.A), repr(self.Ahat), repr(self.B), repr(self.Abar),
333 repr(self.Atilde), repr(self.Bbar)
334 )
335
336 #------------------------------------------------------------
337 def latex(self, **kwargs):
338 '''Returns the latex formatted version of this state space model.
339
340 kwargs
341 ------
342 Mname : str
343 The name to give to matrix `M`, where M is any of A, Ahat, B, or Abar,
344 Atilde, or Bbar.
345
346 Returns
347 -------
348 latex : str
349 '''
350 Aname = kwargs.get('Aname', 'A')
351 Ahatname = kwargs.get('Ahatname', r'\hat{A}')
352 Bname = kwargs.get('Bname', 'B')
353 Abarname = kwargs.get('Abarname', r'\bar{A}')
354 Atildename = kwargs.get('Atildename', r'\tilde{A}')

225



www.manaraa.com

355 Bbarname = kwargs.get('Bbarname', r'\bar{B}')
356
357

358 return (
359 r'{} = {} \qquad {} = {} \qquad {} = {}\\\\{} = {} \qquad {} = {}'
360 r'\qquad {} = {}'
361 ).format(
362 Aname, latex(Matrix(self.A)),
363 Ahatname, latex(Matrix(self.Ahat)),
364 Bname, latex(Matrix(self.B)),
365 Abarname, latex(Matrix(self.Abar)),
366 Atildename, latex(Matrix(self.Atilde)),
367 Bbarname, latex(Matrix(self.Bbar))
368 )

Listing 11 pyrics.Representations.DiscreteStateSpace

1 #------------------------------------------------------------
2 # pyrics/Representations/DiscreteStateSpace.py
3 #
4 # Representation of a discrete-time state space model.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 from operator import gt, ge
22 import numpy as np
23 from sympy import latex
24 from sympy.matrices import Matrix, eye
25 from sympy.abc import z
26
27 from .DiscreteTime import DiscreteTime
28
29

30 class DTSS(DiscreteTime):
31 '''A discrete time state space model, where dynamics are given by:
32

33 x[k + 1] = Ax[k] + Bu[k]
34 y[k] = Cx[k] + Du[k]
35

36 where k is a time index, x[k] is in R^n, u[k] is in R^m, and y[k]
37 is in R^p.
38
39 Parameters
40 ----------
41 A : numpy.array (n x n)
42 B : numpy.array (n x m)
43 C : numpy.array (p x n)
44 D : numpy.array (p x m) or None, default=None
45 If not given, will be initialized to an array of zeros.
46 '''
47
48 #------------------------------------------------------------
49 def __init__(self, A, B, C, D=None):
50 A = np.array(A)
51 B = np.array(B)
52 C = np.array(C)
53
54 # Compute Dimensions
55 n, n1 = A.shape
56 n2, m = B.shape
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57 p, n3 = C.shape
58
59 # Initialize D if needed
60 if D is None:
61 D = np.zeros((p, m))
62 else:
63 D = np.array(D)
64
65 p1, m1 = D.shape
66
67 # Check Dimensions
68 if n1 != n:
69 raise ValueError(
70 'A must be square. Given A as ({} x {})'.format(n, n1)
71 )
72 if n2 != n:
73 raise ValueError((
74 'B must have the same number of rows as A. Given A as ' # pylint: disable=W1308
75 '({} x {}) but B as ({} x {})'
76 ).format(n, n, n2, m))
77 if n3 != n:
78 raise ValueError((
79 'C must have the same number of columns as A. Given A as ' # pylint: disable=W1308
80 '({} x {}) but C as ({} x {})'
81 ).format(n, n, p, n3))
82 if p1 != p:
83 raise ValueError((
84 'D must have the same number of rows as C. Given C as '
85 '({} x {}) but D as ({} x {})'
86 ).format(p, n3, p1, m1))
87 if m1 != m:
88 raise ValueError((
89 'D must have the same number of columns as B. Given B as '
90 '({} x {}) but D as ({} x {})'
91 ).format(n2, m, p1, m1))
92
93 # Register Matrices and Dimensions
94 self.A = A
95 self.B = B
96 self.C = C
97 self.D = D
98
99 self.n = n

100 self.m = m
101 self.p = p
102
103 #####################################################################
104 # Public Methods
105 #####################################################################
106
107 #------------------------------------------------------------
108 def simulate(self, Du, x0=None):
109 '''Simulate the system with the inputs in Du.
110
111 Parameters
112 ----------
113 Du : numpy.array (T x m)
114 The inputs where each row k is u(k)^T.
115 x0 : numpy.array (n x 1)
116 The initial conditions. NOT YET IMPLEMENTED.
117
118 Returns
119 -------
120 Dy : numpy.array (T x p)
121 The simulated outputs given the inputs and initial conditions, where
122 each row k is y(k)^T.
123 '''
124 assert x0 is None # TODO
125
126 A = self.A
127 B = self.B
128 C = self.C
129 D = self.D
130
131 if x0 is None:
132 x0 = np.zeros((self.n, 1))
133
134 T, m = Du.shape
135 assert m == self.m
136 Dy = np.zeros((T, self.p))
137
138 x = x0
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139 x = x.reshape((self.n, 1))
140 for i in range(T):
141 u = Du[i, :]
142 u = u.reshape((self.m, 1))
143 y = C.dot(x) + D.dot(u)
144 y = y.reshape((self.p, 1))
145 x = A.dot(x) + B.dot(u)
146 x = x.reshape((self.n, 1))
147 Dy[i, :] = y.T
148
149 return Dy
150
151 #------------------------------------------------------------
152 def is_stable(self, include_marginally=False):
153 '''Determine whether this system is stable.
154
155 The conditions of stability are as follows:
156 - If the magnitude of *all* eigenvalues of A are strictly less than
157 one, the system is (asymtotically) stable.
158 - If the magnitude of *all* eigenvalues of A are less than or equal
159 to one, and at least one eigen value has magnitude equal to one,
160 then the system is marginally stable.
161 - If the magnitude of *any* eigenvalue is strictly greater than
162 one, then the system is unstable.
163
164 Examples
165 --------
166 Check to see if the DTSS system `ss` is asymptotically stable:
167

168 ss.is_stable() == True
169
170 Check to see if the DTSS system `ss` is either asymptotically stable
171 or marginally stable:
172

173 ss.is_stable(include_marginally=True) == True
174
175 Check to see if the DTSS system `ss` is marginally stable only:
176

177 (ss.is_stable(True) and not ss.is_stable()) == True
178
179 Parameters
180 ----------
181 include_marginally : bool, default=True
182 If True, marginally stable systems are considered to be stable,
183 otherwise, marginally stable systems are considered to be unstable.
184
185 Returns
186 -------
187 is_stable : bool
188 '''
189 eigs, _ = np.linalg.eig(self.A)
190
191 if include_marginally:
192 comp = gt
193 else:
194 comp = ge
195
196 for eig in eigs:
197 if comp(abs(eig), 1):
198 return False
199 return True
200
201 #####################################################################
202 # Conversions
203 #####################################################################
204
205 #------------------------------------------------------------
206 def to_TF(self):
207 '''Converts this state space model into a transfer function matrix.
208
209 Returns
210 -------
211 G : DTTF
212 The discrete time transfer function matrix representation of this system.
213 '''
214 from . import DTTF
215

216 Asym = Matrix(self.A)
217 Bsym = Matrix(self.B)
218 Csym = Matrix(self.C)
219 Dsym = Matrix(self.D)
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220 Isym = eye(self.n)
221 G = Csym * (z * Isym - Asym).inv() * Bsym + Dsym
222

223 return DTTF(G)
224
225 #------------------------------------------------------------
226 def to_DSF(self, factor=True):
227 '''Convert this state space model into a DSF.
228
229 TODO : Generalize
230 FOR NOW ASSUMES THAT C = [I 0]
231 TODO : take advantage of factor
232
233 Parameters
234 ----------
235 factor : bool, default=True
236 If True, simplifies and factors all rational polynomials (coefficients
237 should be rational). Otherwise only simplifies.
238
239 Returns
240 -------
241 QP : DTDSF
242 The discrete time DSF representation of this system.
243 '''
244 from . import DTTF, DTDSF
245
246 A = self.A
247 B = self.B
248 C = self.C
249 D = self.D
250
251 p, _ = C.shape
252 n, _ = A.shape
253 # h, m = B.shape
254

255 A11 = Matrix(A[:p, :p])
256 if p < n:
257 A12 = Matrix(A[:p, p:n])
258 A21 = Matrix(A[p:n, :p])
259 A22 = Matrix(A[p:n, p:n])
260 else:
261 A12 = Matrix([])
262 A21 = Matrix([])
263 A22 = Matrix([])
264

265 B1 = B[:p, :]
266 B2 = B[p:, :]
267
268 # l, _ = A22.shape
269 l = n - p
270 Isym = eye(l)
271
272 if p != n:
273 W = A11 + A12 * (z * Isym - A22).inv() * A21
274 V = B1 + A12 * (z * Isym - A22).inv() * B2
275 else:
276 W = A11
277 V = B1
278
279 Wdiag = W * 0
280 for i in range(p):
281 Wdiag[i, i] = W[i, i]
282

283 I2 = eye(p)
284 Wdinv = (z * I2 - Wdiag).inv()
285 Q = Wdinv * (W - Wdiag)
286 P = Wdinv * V + (I2 - Q) * Matrix(D)
287
288
289 if factor:
290 pass # TODO use or remove
291

292 return DTDSF(DTTF(Q), DTTF(P))
293
294 #####################################################################
295 # Printing and representation functions
296 #####################################################################
297
298 #------------------------------------------------------------
299 def __repr__(self):
300 # return repr(self.G)
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301 return r'A = {}\nB = {}\nC={}\nD={}'.format(
302 repr(self.A), repr(self.B), repr(self.C), repr(self.D)
303 )
304
305 #------------------------------------------------------------
306 def latex(self, **kwargs):
307 '''Returns the latex formatted version of this state space model.
308
309 kwargs
310 ------
311 Mname : str
312 The name to give to matrix `M`, where M is any of A, B, C, or D.
313
314 Returns
315 -------
316 latex : str
317 '''
318 Aname = kwargs.get('Aname', 'A')
319 Bname = kwargs.get('Bname', 'B')
320 Cname = kwargs.get('Cname', 'C')
321 Dname = kwargs.get('Dname', 'D')
322

323 return (
324 r'{} = {} \qquad {} = {}\\\\{} = {} \qquad {} = {}'
325 ).format(
326 Aname, latex(Matrix(self.A)), Bname, latex(Matrix(self.B)),
327 Cname, latex(Matrix(self.C)), Dname, latex(Matrix(self.D))
328 )

Listing 12 pyrics.Representations.DiscreteTime

1 #------------------------------------------------------------
2 # pyrics/Representations/DiscreteTime.py
3 #
4 # Base representation for discrete-time models.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 from .SystemRepresentation import SystemRepresentation
22
23

24 class DiscreteTime(SystemRepresentation):
25 '''Common functionality for all discrete time system representations.
26 '''
27
28 pass

Listing 13 pyrics.Representations.DiscreteTransferFunction

1 #------------------------------------------------------------
2 # pyrics/Representations/DiscreteTransferFunction.py
3 #
4 # Representation of a discrete-time transfer function.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.
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10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 import warnings
22 from copy import copy, deepcopy
23
24 import numpy as np
25 # import sympy as sp
26 from sympy import (
27 oo, limit, latex, factor, nsimplify, apart, fraction, degree, Poly
28 )
29 from sympy.abc import z
30 from sympy.matrices import Matrix
31 from sympy.core.add import Add
32 from pyrics.PolynomialUtilities import (
33 is_proper, is_rational_polynomial
34 )
35
36 from pyrics.Algorithms import frequencyReconstruct
37 from .DiscreteTime import DiscreteTime
38
39

40 class DTTF(DiscreteTime):
41 '''Representation of a discrete time transfer function.
42
43 Parameters
44 ----------
45 G : sympy rational polynomial in z or sympy Matrix of rational polynomials.
46 '''
47
48 #------------------------------------------------------------
49 def __init__(self, G):
50 if not isinstance(G, Matrix):
51 G = Matrix(G)
52 if len(G.shape) != 2:
53 raise ValueError(
54 'G must be a two-dimensional matrix'
55 )
56
57 # TODO : ensure that only symbol is z
58
59 self.p, self.m = G.shape
60 for i in range(self.p):
61 for j in range(self.m):
62

63 G[i, j] = nsimplify(G[i, j])
64 G[i, j] = factor(G[i, j])
65

66 if not is_rational_polynomial(G[i, j], z):
67 raise ValueError(
68 'G[{},{}] must be a rational polynomial in z, given {}'.format(
69 i, j, G[i, j]
70 )
71 )
72

73 if not is_proper(G[i, j], z):
74 warnings.warn(
75 'G[{},{}] = {} is not proper'.format(
76 i, j, G[i, j]
77 )
78 )
79 self.G = G
80
81 #####################################################################
82 # Public Properties
83 #####################################################################
84
85 #------------------------------------------------------------
86 @property
87 def shape(self):
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88 '''The dimensions of this transfer function.
89
90 Returns
91 -------
92 m : int > 0
93 The number of rows in the transfer function.
94 n : int > 0
95 The number of columns in the transfer function.
96 '''
97 return self.G.shape
98
99 #####################################################################

100 # Public Methods
101 #####################################################################
102
103 #------------------------------------------------------------
104 def reconstruct(self, K=None):
105 '''Reconstruct the network (DSF) generating this transfer function.
106

107 Methodology described in [1].
108
109 Parameters
110 ----------
111 K : np.array (p^2 + pm x pm) or None, default=None
112 The identifiability conditions required to map the TF to the DSF uniquely.
113 If None, assumes that P is diagonal (target specificity); however, an
114 exception is raised in this case if p != m.
115
116 Returns
117 -------
118 F : DTDSF
119 The reconstructed network.
120
121 Sources
122 -------
123 [1] J. Gonalves and S. Warnick, "Necessary and Sufficient Conditions
124 for Dynamical Structure Reconstruction of LTI Networks," IEEE
125 Transactions on Automatic Control, Aug. 2008.
126 '''
127 from . import DTDSF
128

129 Q, P = frequencyReconstruct(self.G, K)
130 return DTDSF(DTTF(Q), DTTF(P))
131
132 #------------------------------------------------------------
133 def limit(self, approaches=oo):
134 '''Compute the limit of this transfer function as z approaches `approaches`.
135
136 Parameters
137 ----------
138 approaches : number or sympy.oo (infinity), default=infinity
139
140 Returns
141 -------
142 limit : numpy.array (p x m)
143 '''
144 lim = np.zeros((self.p, self.m))
145

146 for i in range(self.p):
147 for j in range(self.m):
148 lim[i, j] = limit(self.G[i, j], z, approaches)
149
150 return lim
151
152 #------------------------------------------------------------
153 def inv(self):
154 '''Compute the inverse of this transfer function.
155
156 Returns
157 -------
158 inv : DTTF
159 The inverse.
160 '''
161 return DTTF(self.G.inv())
162
163 #------------------------------------------------------------
164 def diag(self):
165 '''Return a copy of this transfer function where every entry but the
166 diagonals have been set to 0.
167
168 NOTE: Only works on square transfer functions.
169
170 Returns
171 -------
172 Gdiag : DTTF
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173 A TF with the same dimensions as this transfer function.
174 '''
175 m, n = self.shape
176 if m != n:
177 raise Exception('Can only find diag of square transfer functions')
178
179 Gdiag = self.G * 0
180 for i in range(m):
181 Gdiag[i, i] = self.G[i, i]
182

183 return DTTF(Gdiag)
184
185 #------------------------------------------------------------
186 def scalar_inf_norm(self, r=100):
187 '''Compute a matrix of the same dimensions as this, where the entries
188 are the infinity-norms of the corresponding transfer function scalars.
189
190 Parameters
191 ----------
192 r : int > 0, default = 100
193 An integer such that every finite impulse response in this matrix is
194 approximately zero for all t >= r. See the documentation for
195 `ConvolutionalScalar.inf_norm()` for more details.
196
197 Returns
198 -------
199 M : np.array (p x m)
200 '''
201 return self.to_convolutional().to_impulse(r=r).scalar_one_norm()
202
203 #------------------------------------------------------------
204 @property
205 def T(self):
206 '''Compute and return the transpose of this DTTF.
207
208 Returns:
209 --------
210 GT : DTTF (m x p)
211 '''
212 return DTTF(self.G.T)
213
214 #------------------------------------------------------------
215 def copy(self):
216 return copy(self)
217
218 #------------------------------------------------------------
219 def deepcopy(self):
220 return deepcopy(self)
221
222 #####################################################################
223 # Conversion functions
224 #####################################################################
225
226 #------------------------------------------------------------
227 def to_convolutional(self):
228 '''Converts this DTTF to a convolutional form.
229
230 Returns
231 -------
232 Gconv : ConvolutionalTF
233 '''
234 from .ConvolutionalScalar import ConvolutionalScalar
235 from .ConvolutionalTF import ConvolutionalTF
236

237 D = self.limit()
238

239 Gconv = []
240 for i in range(self.p):
241 Gconv.append([])
242 for j in range(self.m):
243 tf = self.G[i, j]
244 d = D[i, j]
245 tf -= d
246 ap = apart(tf)
247

248 if isinstance(ap, Add):
249 args = ap.args
250 else:
251 args = [ap]
252

253 params = []
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254 bsum = 0
255
256 for arg in args:
257 if arg == 0:
258 continue
259 num, den = fraction(arg)
260 assert degree(num) == 0
261 assert degree(den) == 1
262 alpha = float(num)
263 scale, beta = Poly(den).coeffs()
264 beta = -1 * float(beta)
265 scale = float(scale)
266 alpha /= scale
267 beta /= scale
268 b = alpha / beta
269 c = beta
270 params.append(b)
271 params.append(c)
272 bsum += b
273

274 params = [-bsum + d] + params
275 ci = ConvolutionalScalar(params)
276 Gconv[i].append(ci)
277

278 return ConvolutionalTF(Gconv)
279
280 #####################################################################
281 # Printing and representation functions
282 #####################################################################
283
284 #------------------------------------------------------------
285 def __repr__(self):
286 return repr(self.G)
287
288 #------------------------------------------------------------
289 def latex(self, **kwargs):
290 '''Returns the latex formatted version of this transfer function.
291
292 kwargs
293 ----------
294 name : str or None, default = G
295 Prefixes the latex with 'name = ' for whatever name is given. If
296 name is None, just gives the matrix.
297
298 Returns
299 -------
300 latex : str
301 '''
302 name = kwargs.get('name', 'G')
303

304 # sp.init_printing(use_latex='mathjax')
305 if name is not None:
306 prefix = '{} = '.format(name)
307 else:
308 prefix = ''
309

310 return '{}{}'.format(prefix, latex(self.G))
311
312 #####################################################################
313 # Magic Functions
314 #####################################################################
315
316 #------------------------------------------------------------
317 def __neg__(self):
318 return DTTF(-1 * self.G)
319
320 #------------------------------------------------------------
321 def __add__(self, other):
322 m, n = self.shape
323 m1, n1 = self.shape
324
325 if m != m1 or n != n1:
326 raise ValueError(
327 'Dimension mismatch, trying to add transfer functions of '
328 'shapes ({}, {}) and ({}, {})'.format(
329 m, n, m1, n1
330 )
331 )
332

333 return DTTF(self.G + other.G)
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334
335 #------------------------------------------------------------
336 def __radd__(self, other):
337 return self.__add__(other)
338
339 #------------------------------------------------------------
340 def __rmul__(self, other):
341 return other.__mul__(self)
342
343 #------------------------------------------------------------
344 def __sub__(self, other):
345 return self.__add__(-other)
346
347 #------------------------------------------------------------
348 def __mul__(self, other):
349 m, n = self.shape
350 m1, n1 = other.shape
351
352 if n != m1:
353 raise ValueError(
354 'Dimension mismatch, trying to multiply transfer functions of '
355 'shapes ({}, {}) and ({}, {})'.format(
356 m, n, m1, n1
357 )
358 )
359

360 return DTTF(self.G * other.G)
361
362 #------------------------------------------------------------
363 def __pow__(self, n):
364 if not isinstance(n, int):
365 raise ValueError(
366 'Can only raise transfer functions to integer powers'
367 )
368
369 if n < 0:
370 G = self.G.inv()
371 n *= -1
372 else:
373 G = self.G
374

375 return DTTF(G ** n)
376
377 #------------------------------------------------------------
378 def __getitem__(self, key):
379 return DTTF(self.G[key])
380
381 #------------------------------------------------------------
382 def __setitem__(self, key, value):
383 self.G[key] = value
384
385 #------------------------------------------------------------
386 def __copy__(self):
387 return DTTF(self.G)
388
389 #------------------------------------------------------------
390 def __deepcopy__(self, memodict={}): #pylint: disable=W0102
391 return DTTF(deepcopy(self.G))

Listing 14 pyrics.Representations.ImpulseDSF

1 #------------------------------------------------------------
2 # pyrics/Representations/ImpulseDSF.py
3 #
4 # Representation of a DSF in impulse response form.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
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17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 from .ImpulseTF import ImpulseTF
22 from .SystemRepresentation import SystemRepresentation
23

24 class ImpulseDSF(SystemRepresentation):
25 '''Representation of a DSF where each entry is an impulse response.
26
27 Models
28

29 Y(t) = Q(t) * Y(t) + P(t) * U(t),
30

31 where * is the convolution operation and each Q_ij(t), P_ij(t) is a finite
32 impulse response of length r.
33
34 Parameters
35 ----------
36 Q : ImpulseTF (p x p)
37 P : ImpulseTF (p x m)
38 '''
39
40 #------------------------------------------------------------
41 def __init__(self, Q, P):
42 self.Q = Q
43 self.P = P
44

45 if not isinstance(Q, ImpulseTF):
46 raise ValueError('Q must be an ImpulseTF; got type={}'.format(type))
47 if not isinstance(P, ImpulseTF):
48 raise ValueError('P must be an ImpulseTF; got type={}'.format(type))
49
50 p, p1 = Q.shape
51 p2, m = P.shape
52 r = Q.r
53 r1 = P.r
54
55 if p != p1:
56 raise ValueError(
57 'Dimension Mismatch: Q must be square. Got dimensions ({}, {})'.format(
58 p, p1
59 )
60 )
61
62 if p != p2:
63 raise ValueError(
64 'Dimension Mismatch: Q and P must have the same number of '
65 'rows. Got dimensions ({}, {}) and ({}, {})'.format(
66 p, p1, p2, m
67 )
68 )
69
70 if r != r1:
71 raise ValueError(
72 'Length of impulse responses in Q and P must match. '
73 'Got r={} in Q and r={} in P'.format(r, r1)
74 )
75
76 self.p = p
77 self.m = m
78 self.r = r
79
80 # Reconstruction caches
81 self.Ybar_cache = None
82 self.Ubar_cache = None
83
84 #####################################################################
85 # Public Methods
86 #####################################################################
87
88 #------------------------------------------------------------
89 @property
90 def shape(self):
91 '''Determine the state of this DSF.
92
93 Given the dimensions of Q as p x p and the dimensions of P as p x m, the
94 shape is (p, m).
95 '''
96 return self.p, self.m
97
98 #------------------------------------------------------------
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99 @staticmethod
100 def reconstruct(Du, Dy, r, K=None, tol=0.001, precision=1e-6,
101 verbose=False):
102 '''Reconstruct a ImpulseDSF from data.
103

104 This is a wrapper around `passiveReconstruct()` from `pyrics.Algorithms`;
105 please refer to the documentation of that function for all information
106 about this method.
107 '''
108 from pyrics.Algorithms.TimeDomainReconstruction import timeReconstruct
109 return timeReconstruct(
110 Du, Dy, r, K=K, tol=tol, precision=precision, verbose=verbose,
111 )
112
113 #####################################################################
114 # Conversion functions
115 #####################################################################
116

117 def to_convolutional(self, order=3, bounds=10, verbose=False, tol=1e-3,
118 njobs=None):
119 '''Convert this ImpulseTF into a ConvolutionalTF.
120
121 Parameters
122 ----------
123 order : int > 0
124 The number of poles (`w`) to add in the convolutional form, meaning the
125 convolutional form will have `2 * order + 1` parameters.
126 bounds : int > 0
127 All parameters in the convolutional form will be bounded to be between
128 -bounds and bounds.
129 verbose : bool, default=False
130 If true, prints status messages.
131 tol : number > 0
132 If the one-norm of any impulse response is less than tol, then 0 will
133 be returned instead of attempting to convert to a convolutional scalar.
134 njobs : int > 0 or None, default=None
135 If not None, paralellizes the conversion of each scalar across a different
136 job. Note that will run conversion of Q and P in sequence.
137
138 Returns
139 -------
140 QP : ConvolutionalDSF
141 '''
142 from .ConvolutionalDSF import ConvolutionalDSF
143

144 Q = self.Q.to_convolutional(
145 order=order, bounds=bounds, verbose=verbose, tol=tol, njobs=njobs,
146 name='Q'
147 )
148 P = self.P.to_convolutional(
149 order=order, bounds=bounds, verbose=verbose, tol=tol, njobs=njobs,
150 name='P'
151 )
152

153 return ConvolutionalDSF(Q, P)
154
155 #####################################################################
156 # Printing and representation functions
157 #####################################################################
158
159 #------------------------------------------------------------
160 def __repr__(self):
161 return 'Q = {}\nP = {}'.format(repr(self.Q), repr(self.P))
162
163 #------------------------------------------------------------
164 def latex(self, **kwargs):
165 '''Returns the latex formatted version of this transfer function.
166
167 kwargs
168 ----------
169 name : str or None, default = G
170 Prefixes the latex with 'name = ' for whatever name is given. If
171 name is None, just gives the equation.
172 length : int > 0, default=3
173 Truncates the impulse response representation to the first `length` items.
174
175 Returns
176 -------
177 latex : str
178 '''
179 Qname = kwargs.get('Qname', 'Q(t)')
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180 Pname = kwargs.get('Pname', 'P(t)')
181

182 return r'{} \qquad {}'.format(
183 self.Q.latex(name=Qname, **kwargs), self.P.latex(name=Pname, **kwargs)
184 )
185
186 #------------------------------------------------------------
187 def get_plotly(self, Qname='Q(t)', Pname='P(t)', Qplot=None, Pplot=None,
188 Qtitle='', Ptitle='', scale=200, **kwargs):
189 '''Generate and return plotly data for a time-series representation of
190 this matrix of impulse responses. If `plot`, also draws a plotly figure.
191
192 Parameters
193 ----------
194 Qname : str, default='Q(t)'
195 The prefix to assign to each time series and plot title for the plot of Q.
196 Pname : str, default='Q(t)'
197 The prefix to assign to each time series and plot title for the plot of P.
198 Qplot : function (plotly plot function) or None, default=None
199 If None, only generates and returns the data. If a function is given,
200 plots a single plot of the impulse responses in Q using that function.
201 Pplot : function (plotly plot function) or None, default=None
202 If None, only generates and returns the data. If a function is given,
203 plots a single plot of the impulse responses in P using that function.
204 Qtitle : str, default=''
205 Only used if Qplot is not None. The title to assign to Q's plot.
206 ptitle : str, default=''
207 Only used if Pplot is not None. The title to assign to P's plot.
208 scale : int > 0
209 The dimensions of the figures will be p * scale x p * scale * 1.5
210
211 kwargs
212 ------
213 Any additional parameter that can be used by `go.Scatter`. These will all be
214 passed in to every scalar impulse responses plot function.
215
216 Returns
217 -------
218 Qtraces : dict (tuple -> plotly.graph_objs)
219 Maps (i, j) for the impulse response Q_ij(t) to the plot trace.
220 Ptraces : dict (tuple -> plotly.graph_objs)
221 Maps (i, j) for the impulse response P_ij(t) to the plot trace.
222 '''
223 Qtraces = self.Q.get_plotly(
224 name=Qname, plot=Qplot, title=Qtitle, scale=scale, **kwargs
225 )
226 Ptraces = self.P.get_plotly(
227 name=Pname, plot=Pplot, title=Ptitle, scale=scale, **kwargs
228 )
229
230 return Qtraces, Ptraces

Listing 15 pyrics.Representations.ImpulseScalar

1 #------------------------------------------------------------
2 # pyrics/Representations/ImpulseScalar.py
3 #
4 # Representation of a rational function in impulse response form.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
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18 # limitations under the License.
19 #------------------------------------------------------------
20
21 import numpy as np
22 import plotly.graph_objs as go
23 from scipy.optimize import differential_evolution as evolution
24
25 from .SystemRepresentation import SystemRepresentation
26
27

28 class ImpulseScalar(SystemRepresentation):
29 '''The representation of a linear finite impulse response; i.e.,
30

31 f(t) = [f(0), f(1), f(2), ..., f(r - 1)]
32

33 for some integer r > 0, and where G(t) = 0 for t < 0 and t >= r.
34
35 Parameters
36 ----------
37 impulse : list (length r)
38 The impulse response, where the item at index i is f(i).
39 precision : number > 0
40 f(t) such that |f(t)| < tol will be set to zero.
41 '''
42
43 #------------------------------------------------------------
44 def __init__(self, impulse, precision=1e-6):
45 impulse = list(impulse)
46 self.r = len(impulse)
47 self.precision = precision
48

49 self.impulse = []
50 for ft in impulse:
51 try:
52 val = float(ft)
53 if abs(val) < precision:
54 val = 0
55 self.impulse.append(val)
56 except:
57 raise ValueError('impulse must be a list of numbers')
58
59 #####################################################################
60 # Public functions
61 #####################################################################
62
63 #------------------------------------------------------------
64 def one_norm(self):
65 '''Get the one-norm of this impulse response.
66
67 The one-norm is the sum of the absolute values of every entry in the impulse
68 response.
69
70 Returns
71 -------
72 norm : float >= 0
73 '''
74 return np.linalg.norm(self.impulse, ord=1)
75
76 #####################################################################
77 # Conversion functions
78 #####################################################################
79
80 #------------------------------------------------------------
81 def to_convolutional(self, order=3, bounds=10, tol=1e-3, normord=1):
82 '''Project this impulse response to the nearest convolutional form of order
83 `order`.
84
85 Parameters
86 ----------
87 order : int > 0
88 The number of poles (`w`) to add in the convolutional form, meaning the
89 convolutional form will have `2 * order + 1` parameters.
90 bounds : int > 0
91 Parameters a and b in the convolutional form will be bounded to be between
92 -bounds and bounds. Parameter c will always be between -1 and 1
93 (exclusive) so that the impulse response is stable.
94 tol : number > 0
95 If the `normord`-norm of this impulse response is less than tol, then a 0
96 convolutional scalar will be returned without attempting to find a fit.
97 normord : {int > 0, inf, -inf, 'fro', 'nuc'}, default=1
98 The norm to use. Equivalent to the parameter `ord` in `np.linalg.norm()`.
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99
100 Returns
101 -------
102 ft : ConvolutionalScalar
103 '''
104 from .ConvolutionalScalar import ConvolutionalScalar
105

106 if np.linalg.norm(self.impulse, ord=normord) < tol:
107 return ConvolutionalScalar([0])
108

109 def func(x):
110 conv = ConvolutionalScalar(x)
111 ximp = conv.to_impulse(r=self.r)
112 dist = np.linalg.norm(
113 np.array(self.impulse) - np.array(ximp.impulse), ord=normord
114 )
115 return dist
116

117 boundslist = [(-bounds, bounds)]
118 for _ in range(order):
119 boundslist += [(-bounds, bounds), (-1 + 1e-6, 1 - 1e-6)]
120

121 res = evolution(func, boundslist)
122 return ConvolutionalScalar(res.x)
123
124 #####################################################################
125 # Printing and representation functions
126 #####################################################################
127
128 #------------------------------------------------------------
129 def get_plotly(self, name='f(t)', plot=None, title='', **kwargs):
130 '''Generate and return plotly data for a time-series representation of
131 this impulse response. If `plot`, also draws a plotly figure.
132
133 Parameters
134 ----------
135 name : str, default='f(t)'
136 The name to assign to the time series. Useful if multiple series are added
137 to the same plot, this gives each a label in the legend.
138 plot : function (plotly plot function) or None, default=None
139 If None, only generates and returns the data. If a function is given,
140 plots a single plot of this impulse response using that function.
141 title : str, default=''
142 Only used if plot = True. The title to assign to the plot.
143
144 kwargs
145 ------
146 Any additional parameter that can be used by `go.Scatter`. These will all be
147 passed in to `go.Scatter`.
148
149 Returns
150 -------
151 plotly.graph_objs
152 '''
153 trace = go.Scatter(
154 x=list(range(self.r)),
155 y=self.impulse,
156 name=name,
157 **kwargs
158 )
159
160 if plot is not None:
161 layout = go.Layout(
162 title=title,
163 xaxis=dict(title='$r$'),
164 yaxis=dict(title='${}$'.format(name))
165 )
166 plot({'data': [trace], 'layout': layout})
167
168 return trace
169
170
171 #------------------------------------------------------------
172 def __repr__(self):
173 return repr(self.impulse)
174
175 #------------------------------------------------------------
176 def latex(self, **kwargs):
177 '''Returns the latex formatted version of this transfer function.
178
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179 kwargs
180 ----------
181 name : str or None, default = G
182 Prefixes the latex with 'name = ' for whatever name is given. If
183 name is None, just gives the equation.
184 length : int > 0
185 Truncates the impulse response representation to the first `length - 1`
186 items, followed by '...', followed by the last item
187
188 Returns
189 -------
190 latex : str
191 '''
192 name = kwargs.get('name', 'f(t)')
193

194 # sp.init_printing(use_latex='mathjax')
195 if name is not None:
196 prefix = '{} = '.format(name)
197 else:
198 prefix = ''
199
200 if 'length' in kwargs:
201 impulse = self.impulse[:kwargs['length'] - 1]
202 else:
203 impulse = self.impulse
204

205 impulse = ['{:.3f}'.format(fi) for fi in impulse]
206 impulsestr = ' & '.join(impulse)
207
208 if 'length' in kwargs:
209 impulsestr += r' & \cdots & {:.3f}'.format(self.impulse[-1])
210

211 return r'{}\begin{{bmatrix}}{}\end{{bmatrix}}'.format(prefix, impulsestr)

Listing 16 pyrics.Representations.ImpulseTF

1 #------------------------------------------------------------
2 # pyrics/Representations/ImpulseTF.py
3 #
4 # Representation of a transfer function in impulse response form.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 from functools import partial
22 from multiprocessing import Pool
23
24 import numpy as np
25 from plotly import tools
26
27 from pyrics.utilities import vprint as vprintfull
28 from .SystemRepresentation import SystemRepresentation
29 from .ImpulseScalar import ImpulseScalar
30
31
32 ################################################################################
33 def _convolutionalConvert(job, verbose, order, bounds, tol, name):
34 '''Utility used in converting to a convolutional form.
35
36 Defined outside the class for paralellization.
37 '''
38 vprint = partial(vprintfull, verbose=verbose)
39
40 i, j, scalar = job
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41 vprint('Converting {}[{}, {}]'.format(name, i + 1, j + 1))
42 conv = scalar.to_convolutional(order=order, bounds=bounds, tol=tol)
43 vprint('{}[{}, {}] finished'.format(name, i + 1, j + 1))
44 return i, j, conv
45
46 ################################################################################
47 class ImpulseTF(SystemRepresentation):
48 '''Representation of a transfer function matrix in impulse form.
49
50 Parameters
51 ----------
52 G : list of lists of ImpulseScalar (p x m array)
53 '''
54
55 #------------------------------------------------------------
56 def __init__(self, G):
57 self.G = G
58 self.p = len(G)
59 assert self.p > 0
60 self.m = len(G[0])
61
62 r = None
63 rij = (-1, -1)
64 for i, inner in enumerate(self.G):
65 assert len(inner) == self.m
66 for j, el in enumerate(inner):
67

68 assert isinstance(el, ImpulseScalar)
69
70 # Check that every r is the same
71 # To consider: find the max r and replace every element with an
72 # augmented impulse response of that length.
73 if r is None:
74 r = el.r
75 rij = (i, j)
76 else:
77 if el.r != r:
78 raise ValueError((
79 'Every impulse response must have the same length `r`. We have '
80 'G[{}, {}].r = {} but G[{}, {}].r = {}'
81 ).format(rij[0], rij[i], r, i, j, el.r))
82
83 self.r = r
84
85 #------------------------------------------------------------
86 @property
87 def shape(self):
88 '''Give the shape of this convlolutional TF, which is p x m.
89
90 Returns
91 -------
92 shape : (int > 0, int > 0)
93 '''
94 return (self.p, self.m)
95
96 #####################################################################
97 # Public functions
98 #####################################################################
99

100 #------------------------------------------------------------
101 def scalar_one_norm(self):
102 '''Compute a matrix of the same dimensions as this, where the entries
103 are the one-norms of the corresponding impulse response.
104
105 Returns
106 -------
107 M : np.array (p x m)
108 '''
109 M = np.zeros((self.p, self.m))
110 for i in range(self.p):
111 for j in range(self.m):
112 M[i, j] = self[i, j].one_norm()
113
114 return M
115
116 #####################################################################
117 # Conversion functions
118 #####################################################################
119

120 def to_convolutional(self, order=3, bounds=10, verbose=False, tol=1e-3,
121 njobs=None, name='G'):
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122 '''Convert this ImpulseTF into a ConvolutionalTF.
123
124 Parameters
125 ----------
126 order : int > 0
127 The number of poles (`w`) to add in the convolutional form, meaning the
128 convolutional form will have `2 * order + 1` parameters.
129 bounds : int > 0
130 All parameters in the convolutional form will be bounded to be between
131 -bounds and bounds.
132 verbose : bool, default=False
133 If true, prints status messages.
134 tol : number > 0
135 If the one-norm of any impulse response is less than tol, then 0 will
136 be returned instead of attempting to convert to a convolutional scalar.
137 njobs : int > 0 or None, default=None
138 If not None, paralellizes the conversion of each scalar across a different
139 job.
140 name : str, default='G'
141 The name to display for this matrix in the status messages if verbose
142 is True.
143
144 Returns
145 -------
146 G : ConvolutionalTF
147 '''
148 from .ConvolutionalTF import ConvolutionalTF
149
150 # Define the job function
151 func = partial(
152 _convolutionalConvert, verbose=verbose, order=order, bounds=bounds,
153 tol=tol, name=name
154 )
155
156 # Build the list of jobs
157 jobs = []
158 for i in range(self.p):
159 for j in range(self.m):
160 jobs.append((i, j, self[i, j]))
161
162 # Run the jobs
163 if njobs is None:
164 mapfunc = map
165 else:
166 p = Pool(njobs)
167 mapfunc = p.map
168 rs = mapfunc(func, jobs)
169
170 # Build a placeholder for the results
171 G = []
172 for i in range(self.p):
173 G.append([])
174 for j in range(self.m):
175 G[i].append(None)
176
177 # Extract the results
178 for rsi in rs:
179 i, j, scalar = rsi
180 G[i][j] = scalar
181

182 return ConvolutionalTF(G)
183
184 #####################################################################
185 # Printing and representation functions
186 #####################################################################
187
188 #------------------------------------------------------------
189 def __repr__(self):
190 return repr(self.G)
191
192 #------------------------------------------------------------
193 def latex(self, **kwargs):
194 '''Returns the latex formatted version of this transfer function.
195
196 kwargs
197 ----------
198 name : str or None, default = G
199 Prefixes the latex with 'name = ' for whatever name is given. If
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200 name is None, just gives the equation.
201 length : int > 0, default=3
202 Truncates the impulse response representation to the first `length` items.
203
204 Returns
205 -------
206 latex : str
207 '''
208 name = kwargs.get('name', 'G(t)')
209

210 # sp.init_printing(use_latex='mathjax')
211 if name is not None:
212 prefix = '{} = '.format(name)
213 else:
214 prefix = ''
215

216 matrixstr = '\\\\'.join(
217 [' & '.join(
218 [el.latex(name=None, length=kwargs.get('length', 3)) for el in inner]
219 ) for inner in self.G
220 ]
221 )
222 return '{} \\begin{{bmatrix}}{}\\end{{bmatrix}}'.format(prefix, matrixstr)
223
224 #------------------------------------------------------------
225 def get_plotly(self, name='f(t)', plot=None, title='', scale=200, **kwargs):
226 '''Generate and return plotly data for a time-series representation of
227 this matrix of impulse responses. If `plot`, also draws a plotly figure.
228
229 Parameters
230 ----------
231 name : str, default='G(t)'
232 The prefix to assign to each time series and plot title.
233 plot : function (plotly plot function) or None, default=None
234 If None, only generates and returns the data. If a function is given,
235 plots a single plot of the impulse responses in G using that function.
236 title : str, default=''
237 Only used if plot is not None. The title to assign to the plot.
238 scale : int > 0
239 The dimensions of the figure will be p * scale x p * scale * 1.5
240
241 kwargs
242 ------
243 Any additional parameter that can be used by `go.Scatter`. These will all be
244 passed in to every scalar impulse responses plot function.
245
246 Returns
247 -------
248 traces : dict (tuple -> plotly.graph_objs)
249 Maps (i, j) for the impulse response G_ij(t) to the plot trace.
250 '''
251 traces = {}
252

253 if max(self.p, self.m) < 10:
254 comma = ''
255 else:
256 comma = ','
257

258 subplot_titles = []
259 for i in range(self.p):
260 for j in range(self.m):
261 if '(t)' in name:
262 left, part, right = name.partition('(t)')
263 label = r'${}_{{{}{}{}}}{}{}$'.format(
264 left, i + 1, comma, j + 1, part, right
265 )
266 else:
267 label = r'${}_{{{}{}{}}}$'.format(name, i + 1, comma, j + 1)
268

269 trace = self[i, j].get_plotly(name='', **kwargs)
270 traces[(i, j)] = trace
271 subplot_titles.append(label)
272
273 if plot is not None:
274 fig = tools.make_subplots(
275 rows=self.p, cols=self.m, subplot_titles=subplot_titles,
276 print_grid=False
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277 )
278

279 for ix, trace in traces.items():
280 i = ix[0] + 1
281 j = ix[1] + 1
282 fig.append_trace(trace, i, j)
283

284 fig['layout'].update(
285 title=title,
286 height=self.p * scale,
287 width=self.m * scale * 1.5,
288 showlegend=False
289 # xaxis=dict(title='£r£'),
290 # yaxis=dict(title='£{}£'.format(name))
291 )
292 plot(fig)
293
294 return traces
295
296 #####################################################################
297 # Magic Functions
298 #####################################################################
299
300 #------------------------------------------------------------
301 def __getitem__(self, key):
302 assert len(key) == 2
303 return self.G[key[0]][key[1]]
304
305 #------------------------------------------------------------
306 def __setitem__(self, key, value):
307 assert len(key) == 2
308 self.G[key[0]][key[1]] = value

Listing 17 pyrics.Representations.SystemRepresentation

1 #------------------------------------------------------------
2 # pyrics/Representations/SystemRepresnetation.py
3 #
4 # Base representation for all models.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 from IPython.display import display, Math
22
23

24 class SystemRepresentation():
25 '''Common Functionality for all representations.
26 '''
27
28 #------------------------------------------------------------
29 def display(self, **kwargs):
30 '''Display the compiled latex representation within a
31 jupyter/ipython/hydrogen environment.
32
33 Parameters
34 ----------
35 **kwargs : key word arguments (optional)
36 All arguments to pass in to the `latex()` method implemented by
37 any child.
38 '''
39 return display(Math(self.latex(**kwargs)))
40

245



www.manaraa.com

41 #------------------------------------------------------------
42 def latex(self, **kwargs):
43 '''To be implemented in any child class. Key word arguments can and
44 should be named and specified within any implementation.
45 '''
46 raise NotImplementedError()

Listing 18 pyrics.PolynomialUtilities

1 #------------------------------------------------------------
2 # pyrics/PolynomialUtilities.py
3 #
4 # Collection of miscellaneous utilities related to sympy polynomials.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
21 from sympy import degree, diff, sympify, fraction
22
23 #-------------------------------------------------------------
24 def is_polynomial(expr, arg):
25 '''Determine whether `expr` is a polynomial in `arg`.
26
27 Parameters
28 ----------
29 expr : sympy expression (or something that can be cast as one)
30
31 Returns
32 -------
33 is_polynomial : bool
34 '''
35 expr = sympify(expr)
36 if expr.is_real:
37 # Base case: given a number
38 return True
39

40 d = degree(expr)
41 fin = expr
42 for _ in range(d):
43 fin = diff(fin, arg)
44
45 return fin.is_real
46
47 #------------------------------------------------------------
48 def is_rational_polynomial(expr, arg):
49 '''Determine whether `expr` is a rational polynomial in `arg`.
50
51 Parameters
52 ----------
53 expr : sympy expression (or something that can be cast as one)
54
55 Returns
56 -------
57 is_rational_polynomial : bool
58 '''
59 expr = sympify(expr)
60 n, d = fraction(expr)
61 return is_polynomial(n, arg) and is_polynomial(d, arg)
62
63 #------------------------------------------------------------
64 def is_proper(expr, arg):
65 '''Determine if the given expression is a proper polynomial in arg.
66
67 Parameters

246



www.manaraa.com

68 ----------
69 expr : sympy expression
70 If not a rational polynomial (see `is_rational_polynomial()`, raises
71 `ValueError`)
72
73 Returns
74 -------
75 is_proper : bool
76 '''
77 expr = sympify(expr)
78 if not is_rational_polynomial(expr, arg):
79 raise ValueError(
80 'Can only check properness of rational polynomials.'
81 )
82 n, d = fraction(expr)
83 return _degree(d) >= _degree(n)
84
85 #------------------------------------------------------------
86 def is_strictly_proper(expr, arg):
87 '''Determine if the given expression is a strictly proper polynomial in arg.
88
89 Parameters
90 ----------
91 expr : sympy expression\linespread{0.2}
92 If not a rational polynomial (see `is_rational_polynomial()`, raises
93 `ValueError`)
94
95 Returns
96 -------
97 is_proper : bool
98 '''
99 expr = sympify(expr)

100 if not is_rational_polynomial(expr, arg):
101 raise ValueError(
102 'Can only check properness of rational polynomials.'
103 )
104 if expr == 0:
105 # Special case, 0 is considered to be strictly proper
106 return True
107 n, d = fraction(expr)
108 return _degree(d) > _degree(n)
109
110 #------------------------------------------------------------
111 def _degree(p):
112 '''Wrapper around sympy's `degree()`, setting the degree of numbers to be
113 0.
114 '''
115 if p.is_real:
116 return 0
117 return degree(p)

Listing 19 pyrics.utilities

1 #------------------------------------------------------------
2 # pyrics/utilities.py
3 #
4 # A collection of miscellaneous utilities used within the framework.
5 #
6 # Copyright 2019 Nathan Woodbury
7 #
8 # Licensed under the Apache License, Version 2.0 (the "License");
9 # you may not use this file except in compliance with the License.

10 # You may obtain a copy of the License at
11 #
12 # http://www.apache.org/licenses/LICENSE-2.0
13 #
14 # Unless required by applicable law or agreed to in writing, software
15 # distributed under the License is distributed on an "AS IS" BASIS,
16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 # See the License for the specific language governing permissions and
18 # limitations under the License.
19 #------------------------------------------------------------
20
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21 from datetime import datetime
22 from sympy import latex
23 from IPython.display import display, Math
24
25 #------------------------------------------------------------
26 def list_diff(left, right):
27 '''Treat each list as a set and return the set difference left - right.
28
29 Parameters
30 ----------
31 left : list
32 right : list
33
34 Returns
35 -------
36 diff : list
37 '''
38 return list(set(left) - set(right))
39
40 #------------------------------------------------------------
41 def pprint(m):
42 '''Return a pretty (latex) formatted version of the math in m for use in
43 a Jupyter notebook.
44 '''
45 return display(Math(latex(m)))
46
47 #------------------------------------------------------------
48 def vprint(msg, verbose):
49 '''A verbose printing utility.
50

51 If verbose, displays "[time] : [msg]"
52
53 Parameters
54 ----------
55 msg : str
56 The message to print
57 verbose : bool
58 If False, don't print anything.
59 '''
60 if verbose:
61 print(datetime.now(), ':', msg)
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